Seismic attributes of the Barnett and Bakken shales

Bode Omoboya

16th May, 2013

- Introduction
- Bakken Shale Case Study
- Barnett Shale Case Study
- Other Forward Modeling Projects
Most oil in the Bakken petroleum system resides in open fractures in the Middle Member (Pitman et al, 2001).

Source: USGS

<table>
<thead>
<tr>
<th>Geologic Age</th>
<th>Upper Devonian/Lower Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithology (Middle Member)</td>
<td>Sandstone/Siltstone/Dolomite</td>
</tr>
<tr>
<td>Total Area (sq mi)</td>
<td>200000</td>
</tr>
<tr>
<td>Total Gas (tcf)</td>
<td>945</td>
</tr>
<tr>
<td>Producible Gas (tcf)</td>
<td>20</td>
</tr>
<tr>
<td>Depth (feet)</td>
<td>10000</td>
</tr>
<tr>
<td>Thickness (feet)</td>
<td>150</td>
</tr>
<tr>
<td>Pressure (psi)</td>
<td>5600</td>
</tr>
<tr>
<td>Porosity (%)</td>
<td>5</td>
</tr>
<tr>
<td>Matrix Permeability (nD)</td>
<td>10000</td>
</tr>
<tr>
<td>Pressure Gradient (psi/ft)</td>
<td>0.5</td>
</tr>
<tr>
<td>Clay Content (Middle Member %)</td>
<td>5</td>
</tr>
<tr>
<td>Average Horz Well Cost ($M)</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Bakken Shale – Core Samples and Well Logs

Upper Shale

Middle Member

Lower Shale

Core Image from NDIC

Well: NELSON

MD= 9100 ft

Upper Bakken

Middle Member

Lower Bakken

MD= 9250 ft
Bakken Shale – Shale Volume

1000 ft. Interval 40% – 60% Vsh

200 ft. Interval 80% Vsh

\[I_{GR} = \frac{GR_{log} - GR_{min}}{GR_{max} - GR_{min}} \]

\[V_{sh} = \frac{I_{GR}}{3 - 2I_{GR}} \]

Steiber, 1970

Data Courtesy of Hess Corporation
Bakken Shale – Non-Hyperbolic Moveout

\[V = 3000 \text{ ft/s} \]

\[V = 16000 \text{ ft/s} \]

\[X = 0 \text{ ft} \]

\[X = 15000 \text{ ft} \]

<table>
<thead>
<tr>
<th>(C_{11})</th>
<th>(C_{33})</th>
<th>(C_{44})</th>
<th>(C_{66})</th>
<th>(C_{13})</th>
<th>(\varepsilon)</th>
<th>(\gamma)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>227</td>
<td>54</td>
<td>106</td>
<td>107</td>
<td>0.255</td>
<td>0.481</td>
<td>-0.051</td>
</tr>
</tbody>
</table>

\(\eta \) from Core = 0.341

\(\eta \) from Seismic \(\approx \) 0.32

Jones and Wang, 1981
Physical modeling of anisotropic domains: Ultraasonic imaging of laser-etched fractures in glass

(Geophysics, 2013)

Robert. R. Stewart

Nikolay Dyaur

Bode Omoboya

J.J.S de Figueiredo

Mark Willis

Samik Sil
Minimum Offset: 400m
Maximum Offset: 2000m
CMP Interval: 20m
Depth of Model: 800m (TWT to end of model = 350ms)
Average Velocity of Model: 5800m/s
Dominant Frequency/Wavelength: 120 Hz / 50m

Schematic of NMO eta scan experiments on glass models

Model C3
Model C10
Model C9 “BAKKEN MODEL”
Bakken Shale – Forward Modeling Project

- Model C3
 - Max $\eta = 0.0$
 - Blank Model

- Model C10
 - Max $\eta = 0.23$
 - VTI Model

- Model C9 Azimuth 0
 - Max $\eta = 0.14$
 - VTI+HTI+VTI

- Model C9 Azimuth 45
 - Max $\eta = 0.08$
 - VTI+HTI+VTI

- Model C9 Azimuth 90
 - Max $\eta = -0.06$
 - VTI+HTI+VTI

Max η

- Model C10 VTI Model
- Model C9 Azimuth 0
- Model C9 Azimuth 45
- Model C3 Blank Model
- Model C9 Azimuth 90
Barnett Shale Quick Facts

- **Geologic Age**: Mississipian
- **Lithology**: Dense Organic rich shale
- **Water Saturation (clay-bound)**: 20-30%
- **Gas Saturation**: 70-80%
- **Depth (feet)**: 4000 - 5000
- **Thickness (feet)**: 5-1000 ft
- **Pressure (psi)**: 5600
- **Porosity (%)**: 5
- **Natural fractures**: 100 to 120 deg
- **Natural fractures**: More common in limestone interbeds
- **Artificial fractures**: Oriented in the direction of minimal stress

N-S structural cross section through the Newark Field in the Fort Worth Basin. Modified after Burna and Smosna, 2011
Barnett Shale – CDP Gathers after Time Processing and Migration
Barnett Shale – Residual eta (η) Volume

$t = 0s$

$\eta = -0.2$

$t = 1.5s$

$\eta = 0.2$
Barnett Shale – Seismic to well tie

Well Y

TWT = 600 ms

TVD = 3300 feet

TWT = 800 ms

TVD = 4100 feet

TVD = 4300 feet

Sonic velocity log

Gamma ray log

Density log

Computed reflectivity log
P-Impedance Volume

t = 0.55ms

Base Marble Falls

Top Barnett

Top Ellenberger

t = 0.85ms
Density Volume

Base Marble Falls
Top Barnett
Top Ellenberger

$t = 0.55\text{ms}$

$t = 0.85\text{ms}$
Mu-Rho Volume

$t = 0.55\text{ms}$

Base Marble Falls

Top Barnett

Top Ellenberger

$t = 0.85\text{ms}$
Constituent Materials:

- Resin
- Plexiglass (polycarbonate)
- Copper tubes

Experimental study of the influence of fluids on seismic azimuthal anisotropy.
(Geophysical Prospecting, 2013, submitted, under review)

Bode Omoboya
Emrah Pacal
J.J.S de Figueiredo
Nikolay Dyaur
Robert. R. Stewart
Barnett Shale – Forward Modeling Project

Min offset = 400m, Max offset = 2200m, Offset interval = 30m

All travel time and distance/offset measurements are scaled by a factor of 10,000

Gas saturated
Vnmo = 2131 m/s

Water saturated
Vnmo = 2372 m/s

NMO corrected gather at 30° azimuth at gas and water saturated conditions
Barnett Shale – Forward Modeling Project

Water Saturated

Glycerin Saturated

Stiffness Coefficient (GPa)
Model M3
Crack Density = 4.0 \%

Model M2
Crack Density = 4.5 \%

Shear wave anisotropy from aligned inclusions:
ultrasonic frequency dependence of velocity and attenuation

\(\varepsilon = \frac{N \pi r^2 h}{V} \)

Hudson, 1981
Forward Modeling Examples: Source Frequency VS Anisotropy
Forward Modeling Examples: Source Frequency VS Anisotropy

\[\gamma' = \frac{1}{2} \left(\frac{V_{S1}^2}{V_{S2}^2} - 1 \right) \]

Thomsen, 1986
Acknowledgement

- Dr. Steve Peterson – Marathon Oil
- Michelle Simon – Hess Corporation
- Dr. Edip Baysal – Paradigm
- Schlumberger (For VISTA Processing Software)