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Model M2
Crack Density = 4.5 %

Model M3
Crack Density = 4.0 %

Model M1
Reference Model

Hudson, 1981
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Type equation here.

Thomsen, 1986



� To explore the effect of different fluids on seismic 
response and consequently anisotropy in an inherently 
anisotropic medium.

� To compare predictions of various theories of wave 
propagation in fractured media to lab measurements. 



Model Dimensions = (296.9 X 296.7 X 131.6) mm

Constituent Materials:

• Resin
• Plexiglass 

(polycarbonate)
• Copper tubes



(a)Copper tubes
(b)Plexiglass/polycarbonate 

stack
(c)Grooves or scratches 

between stacked plexiglass
(d)Isotropic background resin

Volume fraction/ratio of 
fractures plexiglass area 
to composite model =

0.12 : 0.88

d



� Fractured area is made up of 95 scratched plexiglass 
sheets each 1.1 mm to 1.3 mm thick 

� Grooves or scratches on the sheets are 0.1 mm to 0.2 
mm deep (on both sides)

� Fractures/scratches are randomly placed and run in all 
directions on the sheets

� Source-receiver transducers with dominant frequency 
100kHz (dominant λ ~ 30 mm) was used in all 
experiments



Vp = 2540m/s
Vs = 1250m/s 
Density ρ = 1.22 g/cc
Vp/Vs = 2.032
Poisson’s ratio * � 0.340

Physical properties of Isotropic resin 
(background medium)



Vp (matrix) = 2300m/s
Vs (matrix) = 1320m/s 
Density (matrix) ρ = 1.188 g/cc
Vp/Vs (matrix)= 1.742
Poisson’s ratio * (matrix) � 0.254

Physical properties of scratched or fractured plexiglass 
stacks(cracked medium)

ɛ = 0.35
ϒ = 0.39

, � 0.007

Porosity φ = 2.5 %

Crack density ζ = 14 %
Crack aspect ratio a = 4.2%

Estimated from 
travel time and 

anisotropic 
measurements

(Thomsen, 1995)  



Physical properties of whole sample/model
(composite medium)

ɛ = 0.22
ϒ = 0.21
, � 0.051
Porosity φ = 2.5 %



� Background resin medium was found to be isotropic and 
homogeneous.

� On close inspection, composite model was found to be 
slightly orthorhombic
� C11 ≠ C22 or C33
� C22 ≈ C33 (5% difference but were treated as equal in our 

analysis) 

� Fractured plexiglass inclusion zone has HTI symmetry 
� Based on model fabrication setup and inverted parameters 

(Thomsen, 1995), we consider our cracks to be somewhat 
penny-shaped with very low aspect ratio (4.2%)

� In all measurements, source wavelength (λ) was 15 to 20 
times greater than fracture aperture  (H)  {λ >> H}



Azimuth 0o

Azimuth 90oAxis of 
symmetry

source

receiver

Source transducer

Receiver transducer

• Single source transmission measurements in all axes and directions at dry 
(Gas saturated), partially saturated (50% water saturation) and wet (100% 
water saturated) conditions 

• Surface scaled CMP measurements at dry (Gas saturated) and wet (100% 
water saturated) conditions 



t=2.5s

t=4s

t=0s

Min offset = 400m, Max offset = 2200m, Offset interval = 30m 

15o azimuth 30o azimuth 45o azimuth 60o azimuth

All travel time and distance/offset measurements are scaled by a factor of 10,000 



t=2.5s

t=2.5s

Gas saturated
Vnmo =2131 m/s 

Water saturated
Vnmo =2372 m/s 

NMO corrected gather at 30o azimuth at gas and water saturated 
conditions
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Gas Saturated

Water Saturated

Percentage 
difference from 
gas to water 
saturated 
conditions
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• Experimental results show that shear wave splitting is affected 
by the nature of the saturating fluid.

• Results show a 45% decrease in ɛ and 30% increase in ϒ as a 
function of water saturation.

• NMO velocities shows different trends with source-receiver 
azimuth as a function of water saturation.

• Stiffness coefficients C33 and C55 are most affected by change in 
the saturating fluid.  

• Repeat experiment with a different saturating fluid (glycerin)
• Quantitative AVAZ analysis on CMP gathers
• Anisotropic reflectivity modeling  from computed stiffness 

coefficients
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