How much is in the tank? Reservoir volume uncertainty

Henrique A. Fraquelli^{+*} Advisor: Robert Stewart⁺ ⁺University of Houston - *Petrobras

Motivation

- Reserves are a major component of an energy company's value
- Estimating reserves accurately is essential

Objective

• Make a **prediction** of the oil volume as well as its **likelihood**

Standard techniques used in resource/reserve estimation

 SPE/WPC/AAPG/SPEE – Petroleum Resources Management System (PRMS) – 2007

"Incorporation of seismic analysis typically improves the underlying reservoir models and yields more reliable resources estimates."

 SEC approved new reporting rules (effective January 1st, 2010)

The Volumetric Method

Hydrocarbon in place

Oil reservoirs

$$OOIP = \frac{7,758 \times A \times h \times \phi \times (1 - S_{wi})}{B_{oi}}$$

OOIP = Original oil in place

Our focus

A = Area (acres) h = net pay thicknesss (ft) $\phi = porosity (fraction)$ $S_{wi} = initial water saturation (fraction)$ $B_{oi} = initial oil formation volume factor (rb/stb)$

Tearpock, 2011

Blackfoot 3C-3D: location map

HC reservoirs are found in structural and stratigraphic traps where porous **channel sands** pinch out against non-reservoir regional strata or low-porosity sediments.

Primary HC at the field is oil, although some gas may be encountered.

Spreading the GRI information

Vp/Vs distribution

Vp/Vs vs GRI

From 3C-3D seismic data

Todorov & Stewart, 2000

Uncertainty in GRI cokriging

GRI after cokriging

Cross-validation Absolute error

Todorov & Stewart, 2000

Porosity distribution

25

mann-miss

Cokriging Result

100

191.6 189.2 186.9 184.5

182.1

179.8

177.4

172.6

170.2

PCP Engineering Drain. area = 64 Ht Net Pay = 17.5m OOIP ~ 1.36x10⁶m³ -

Seismic & Logs Area ~ 60 Ht Oil column ~ 3m Volume ~ $1.2x10^6m^3$ Stewart 2010 + Sw = 0.25

Oil volume predicted by Todorov

 $OV_{Todorov} \approx 7,910,000$ bbl

1st Method of estimation of uncertainty in OV

Comparison of a Uncertainty/Error measured/simulated value with quantification a reference value Blind wells procedure (cross-validation) independent measurements Well log data (reference value)

> % Error thickness = 6% % Error %sand = 10% % Error porosity = 11%

Adopting that the measurements and errors are independent to each other, using σ as a measurement of the uncertainty

Uncertainty in OV

(Coleman & Steele, 1989)

$$\left(\frac{\sigma_{OV}}{OV}\right)^{2} = \left(\frac{\sigma_{thickness}}{thickness}\right)^{2} + \left(\frac{\sigma_{\% sand}}{\% sand}\right)^{2} + \left(\frac{\sigma_{\phi}}{\phi}\right)^{2} + \left(\frac{\sigma_{S_{HC}}}{S_{HC}}\right)^{2} + \left(\frac{\sigma_{Area}}{Area}\right)^{2}$$

% Error thickness = 6% % Error %sand = 10% % Error porosity = 11% % Error S_{oil} (from logs) = 10% % Error Area = 15%

Exploring the PDF-CDF relationship

2nd Method of estimation of uncertainty in OV

Monte Carlo approach

- OV = thickness × % sand × ϕ × $(1 S_{wi})$ × Area
- 10,000 simulations

Conclusions & Future work

- A total uncertainty was associated with the OV prediction
- A probability was associated with the OV prediction
- Quantification of the contribution of geophysical information used in the OV prediction should be done
 - Picking uncertainty

$$f_{m} = \frac{1}{f_{m} \log_{2} \left[1 + \left(\frac{S}{N}\right)^{2}\right]}$$

Stewart et al. 1984

 $SSE(f) = SS(f)\sqrt{SD \cdot NR \cdot NA}$

Meunier, 2011