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THE ATTENUATION CONSTANT
OF EARTH MATERIALS*

W. T. BORN}

ABSTRACT

This paper discusses briefly the nature of viscous losses and solid friction losses,
both of which may cause sound waves to be attenuated as they travel through a physical
medium. A simple experimental cechnique for determining the nature and magnitude
of the loss factor in small rock samples is described, and data are given which indicate
that solid friction losses are primarily responsible for the observed attenuation of the
seismic waves employed in the seismic reflection method.

A method of estimating the attenuation factor of earth materials from seismic
reflection records is outlined and it is shown that the values so obtained are not in-
consistent with the laboratory data.

Frequency characteristic curves of scismic wave paths are derived on the basis of
the experimental data.
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STRESS

AW = Energy loss per cycle

SOLID FRICTION VISCOUS DAMPING
AW =Ka? = KbLEY | AW =Ka? f =KbLEIf!

WHERE WHERE

K = SOLID FRICTION FACTOR K = VISCOUS LOSS FACTOR

E = ELASTIC CONSTANT f = FREQUENCY

am = MAXIMUM STRESS
b = MAXIMUM DISPLACEMENT

F1G. 1. Stress-strain diagram.



A NOTE ON THE DETERMINATION OF THE
VISCOSITY OFSHALEFROM THE
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MEASUREMENT OF WAVELET
BREADTH*

NORMAN RICKERT

ABSTRACT

~ I'rom the breadth of a wavelet for a given travel time, it is possible to calculate the
viscosity of the formation through which the seismic disturbance has passed. This
calculation has been carried out for the Cretaceous Shale of Eastern Colorado, and the

value thus found ranges from 2.7 X107 to 4.9X 107, with a mean value of 3.8X 10’
grams per cm. per second.
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GEOPHYSICS

ATTENUATION OF SHEAR AND C()MPRESSI(_)NAL
WAVES IN PIERRE SHALE*

-—ceme - e - -

I. J. McDONAL,t F. A. ANGONA,t R. L. MILLS,t R. L. SENGBUSH, ¥
R. G. VAN NOSTRAND,§ anpo J. E. WHITEY
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ABSTRACT

Attenuation measurements were made near Limon, Colorado, where the Pierre shale is unusually
uniform from depths of less than 100 ft to approximately 4,000 ft. Particle velocity wave forms were
measured at distances up to 750 ft from explosive and mechanical sources. Explosives gave a well-
defined compressional pulse which was observed along vertical and horizontal travel paths. A weight
dropped on the bottom of a borehole gave a horizontally-traveling shear wave with vertical particle
motion. In each case, signals from three-component clusters of geophones rigidly clamped in boreholes
were amplified by a calibrated, wide-band system and recorded oscillographically. The frequency
content of each wave form was obtained by Fourier analysis, and attenuation as a function of fre-
quency was computed from these spectra.

For vertically-traveling compressional waves, an average of 6 determinations over the fre-
quency range of 50-450 cps gives a=0.12 {. For horizontally-traveling shear waves with vertical
motion in the frequency range 20-125 cps, the results arc expressed by a= 1.0 f. In each case attenua-
tion is expressed in decibels per 1,000 ft of travel and f is frequency in cps. These measurements in-
dicate, therefore, that the Pierre shale does not behave as a visco-elastic material.
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ATTENUATION IN db/1000 FEET

WAVE ATTENUATION IN PIERRE SHALE
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GEOPHYSICS, VOL. XXIV, NO. 4 (OCTOBER, 1959), PP, 667-680, 8 FIGS,

A LOSS MECHANISM FOR THE PIERRE SHALE*

C. W. HORTONY

ABSTRACT

A theoretical study is made of a fairly simple model of an clastic solid in which losses are at
tributed to both the shear modulus and the bulk modulus. Each of these clastic parameters is repre
sented by a circuit containing two springs and one dashpot. This is a modification of the usual
Kelvin solid that has finite stifiness at infinite [requency. The four relaxation times introduced in
the model are determined to fit the experimental data presented by McDonai el al. (1958). It is shown
that one can obtain a very good representation of their experimental data with the model described
above. The wave equation for an clastic solid is given in a canonical form so that onc can compare
easily the behavior of different models of the elastic parameters.
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GEOPHYSICS. VOL. 50. NO. 4 (APRIL 1985); P. 615-626. 16 FIGS

Q estimation from vertical seismic profile data and anomalous variations in

the central North Sea
S. D. Stainsby* and M. H. Worthington
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GEOPHYSICS, VOL. 63, NO. 2 (MARCH-APRIL 1998): P. 465—478, 17 FIGS., 1 TABLE.

Ultrasonic attenuation in Glenn Pool rocks, northeastern Oklahoma
Andrew P. Shatilo*, Carl Sondergeld*, and Chandra S. Rai
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AGL Data
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High porosity sandstone
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Low porosity sandstone
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