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SUMMARY

Hydrocarbon traps are generally located beneath complex geo-

logical structures. Such areas contain many seismic diffractors

that carry detailed structure information in the order of the seis-

mic wavelength. Therefore, the development of computational

resources capable of detecting diffractor points with a good

resolution is desirable, but has been a challenge in the area of

seismic processing. In this work, we present a method for the

detection of diffractor points in the common-offset gathers do-

main. In our approach, the diffraction imaging is based on the

diffraction operator, which can be used in both the time and

depth domains, in accordance with the complexity of the area.

This method, which does not require any knowledge apart

from the migration velocity field (i.e., rms velocities or interval

velocities) applies pattern recognition to the amplitudes along

the diffraction operator. Numerical examples using synthetic

and real data demonstrate the feasibility of the technique.

INTRODUCTION

It is well known that hydrocarbon reservoirs commonly are

located in geological stsructures that are difficult to image with

seismic methods and obtain high resolution. This structures

include common hydrocarbon traps, such as faults, pinch-outs,

unconformities, salts domes, and other structures the size of

which is of the order of the wavelength (Trorey, 1970).

Because of the importance of these types of structures, sev-

eral methods for imaging diffractions have been developed in

the recent past. The first authors to look into the topic were

Landa et al. (1987) and Landa and Keydar (1998), who pro-

posed and refined a detection method related to specific kine-

matic and dynamic properties of diffracted waves. Another

approach (Moser and Howard, 2008) is based on suppressing

specular reflections to image diffractions in the depth domain.

Most recently, Zhu and Wu (2010) developed a method based

on the local image matrix (LIM), which uses an image con-

dition in the local incident and reflection angles for source-

receiver pairs to detect diffractions.

In this work, we propose a diffraction detection method based

on an amplitude analysis along the elementary diffractions

(Tabti et al., 2004). This method does not require any knowl-

edge apart of from the migration velocity field, i.e., rms ve-

locities or interval velocities depending on the complexity of

the area. It applies pattern recognition to the amplitudes along

the diffraction operator. Numerical examples on synthetic and

ground penetrating radar (GPR) field data demonstrate the fea-

sibility of the method.

METHOD

Diffraction operator

Tabti et al. (2004) introduced amplitude analysis along ele-
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Figure 1: (Illustration of the diffraction operator for (a) a re-

flection point and (b) a void image point. Top: amplitude along

the diffraction operator; center: diffraction traveltime and seis-

mic event; bottom: image point and ray family. (c) Illustration

of the diffraction operator for a diffraction point. Top: ampli-

tude along the diffraction operator; center: diffraction travel-

time and seismic event; bottom: image point and ray family.

mentary diffractions for Fresnel aperture specification. As il-

lustrated in Figure 1a, the traveltime of an elementary diffrac-

tion associated with a reflection point is tangent to the reflec-

tion traveltime at the stationary point (location of the specular

reflection event). More specifically, in limited bandwidth sit-

uations, this tangential point becomes a tangential contact re-

gion, which defines the minimum aperture for true-amplitude

Kirchhoff migration (Schleicher et al., 1997). (Tabti et al.,

2004) named it the Fresnel aperture due to its close relation-

ship to the Fresnel zone. For image point off any reflectors or

diffractors, below referred to as “void image points”, there is

no such region. The traveltime of the elementary diffraction

associated with a void image point may cross some reflection

events, but won’t be tangential to any events (see Figure 1b),

except for extremely rare coincidental situations.

Tabti et al. (2004) described amplitude analysis along elemen-

tary diffractions by means of a diffraction operator D. This

operator derives from the Kirchhoff depth migration integral

(Schleicher et al., 1993)

I(M) =

∫

A f

d2ξ W (M,ξ )∂tU(ξ , t)|t=τD(M,ξ ) (1)

where U(ξ , t) is the seismic data measured at ξ , τD(M,ξ ) is
the traveltime of the elementary diffraction of M, A f is the

Fresnel aperture, andW (M,ξ ) is a weight function. For sim-

plicity, we omit the weight function in the present study, i.e.

W (M,ξ ) = 1. Integration variable ξ is the horizontal coordi-

nate of the seismic section to be migrated, for instance the mid-

point coordinate for a common-offset section or the receiver

coordinate for a common-shot section.

Instead of performing the summation, the diffraction operator

D(M) at an image point M collects a single valued curve (or

surface, in the 3D case), defined as a function of the integra-

tion variable ξ . Its value at ξ is the amplitude the stack in
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equation 1 will consider at ξ . This value defines the amplitude

of the elementary diffraction measured at ξ . More specifically,

D(M,ξ ) =W (M,ξ )∂tU(ξ , t)|t=τD(M,ξ ) . (2)

In this paper, we restrict ourselves to a simplified version of the

diffractor operator proposed by Tabti et al. (2004), based on

the Kirchoff time migration integral for common-offset con-

figuration. Therefore, the elementary diffraction traveltime

τD(M,ξ ) is given by (Landa et al., 1987)

τD(M,ξ ) =

√

(
t0

2
)2+(

ξ −h

2
)2+

√

(
t0

2
)2+(

ξ +h

2
)2 (3)

where t0 is zero-offset time for any point at subsurface, h is the

half-offset and v is medium velocity.

Tabti et al. (2004) also noted that in the case of a diffractor

point (either a point scatterer or an edge), the correspond-

ing elementary diffraction corresponds to the scattered seismic

event. The Fresnel aperture then extends theoretically to in-

finity, regardless of the frequency content of the source pulse.

Figure 1(c) illustrates the diffraction operator at a diffraction

point.

Figures 1 form the basis of our diffraction imaging algo-

rithm explained in the next section. The main idea of

our detection method is to classify every point in the im-

age domain M as a diffractor, reflector or noise point by

means of the characteristics of its diffraction operatorD(M,ξ ).
The approach consists in straightforward classification us-

ing a well-established pattern-recognition technique called k-

nearest-neighbors (kNN).

Diffraction imaging by pattern recognition

Pattern recognition aims at classifying data (patterns) based

either on a priori knowledge or on statistical information ex-

tracted from the patterns (Duda and Hart, 1973; Theodoridis

and Koutroumbas, 1999). Pattern recognition techniques have

found applications in various areas, for instance, decision mak-

ing, inspection of objects, and automatic character recognition

(Theodoridis and Koutroumbas, 1999).

The mathematical tool to achieve this aim is called a classifier.

Suppose we are faced with the problem to classify a certain

set of patterns into N classes, w1, · · · ,wn. Let x1, · · · ,xp ∈ IRn

be samples of patterns whose class is already known, and

Ci ⊆ {x1, · · · ,xp} be a subset of patterns associated with class

wi such thatC j ∩Ci = /0 for i 6= j, i.e., there are no subsets that

fall into two different classes at the same time. Given an ar-

bitrary pattern x, a classifier aims at associating x with one of

the N classes. In this work, we are only concerned in imaging

diffractions. Therefore we use two classes (N = 2): the diffrac-

tion class C0 and the non-diffraction class C1 (that includes

both noise and reflection image points). We also restrict our-

selves to the so-called k-nearest-neighbour (kNN) classifier,

because of its simple implementation.

The kNN classifier is a supervised method to solve problems in

pattern recognition. It is a method for classifying objects based

on a certain distance measure and a fixed set of samples in the

feature space for which the associated label of class is already

known. The development of the kNN classifier was inspired

by the technique for the estimation of a non-parametric proba-
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Figure 2: Model with three diffractors.

bility density function (PDF) called k-nearest-neighbour den-

sity estimation, which is basically a variation of the histogram

approximation of an unknown PDF. Moreover, although no as-

sumptions about PDFs need to be made, the strategy used by

the kNN model to classify patterns reminds of the well-known

Bayes classification rule (Duda and Hart, 1973; Theodoridis

and Koutroumbas, 1999).

Let k ≤ p be a positive fixed integer and dist a distance mea-

sure in IRn. Then, the kNN classification process is given by

the following rules (Theodoridis and Koutroumbas, 1999)

• Find the k nearest neighbours of x in the set

{x1, · · · ,xp} in terms of their distances dist(x,xi), for
i = 1, · · · , p. Let the symbols x̃1, · · · , x̃k ∈ {x1, · · · ,xp},
with x̃i 6= x̃ j for i 6= j, denote those k nearest neigh-

bours.

• Identify the number ki of patterns x̃i among these k

nearest neighbours that belong to class wi for i =
1, · · · ,N.

• Assign x to the class w j with the maximum number k j
of samples.

Since the results of a kNNmodel depend of choice of the num-

ber k of nearest neighbours, techniques to select an appropri-

ate parameter k like, for example, cross-validation, can be em-

ployed. Also, the performance may vary as a function of the

distance measure considered. Usually, Euclidean distance is

used as the distance metric.

As with all supervised models, the accuracy of the kNN clas-

sifier depends on the given training set. If non-representative

samples of classes are used as training data, the performance

of kNN classification can be severely degraded.

In the simulations described in the Numerical Examples sec-

tion, we have employed a value of k = 1 and the Euclidean

distance measure.

RESULTS AND DISCUSSION

Synthetic example I: Model with three diffractors

The first model consists of two diffraction points and one dip-

ping reflector with an endpoint in the center of the model,

buried in a constant-velocity background with v = 2000 m/s

(see Figure 2).

The synthetic dataset was generated by Kirchhoff modelling. It

simulates a zero-offset section with 500 source-receivers pairs

spaced at 10 m covering an extension of 5000 m. To the syn-

thetic data we added random noise with a signal-to-noise ratio

(S/N) of 100 with respect to the reflection event, which cor-

responds to a S/N of about 10 for the diffraction events (see

Figure 3).
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Figure 3: Zero-offset dataset obtained by Kirchhoff modeling.
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Figure 4: Time-migrated image of dataset from Figure 3.
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Figure 5: Diffraction operators of image locations in Figure 4

associated to (a) a void (x= 2.5 km, t = 0.8 s), (b) a reflection

(x = 3.5 km, t = 1.73 s) and (c) a diffraction (x = 2.5 km,

t = 0.5 s) point.

Conventional Kirchhoff migration of these data produces the

image shown in Figure 4. While this image contains all

three diffraction points, the two isolated diffraction points have

rather low amplitudes and would be hard to visualize in noisy

data. Only the endpoint of the reflector is clearly identifiable as

a diffraction point. Figure 5 shows the diffraction operators of

image locations associated to (a) a void (x= 2.5 km, t = 0.8 s),

(b) a reflection (x = 3.5 km, t = 1.73 s) and (c) a diffraction

(x= 2.5 km, t = 0.5 s) point, respectively.

As suggested by Landa et al. (1987), we normalized the dataset

trace-by-trace using its envelope (Figure 6). Figure 7 shows

the diffraction panels for the profile located at x = 2.5 km ob-

tained from the raw data Figure 7a and from the normalized

data Figure 7b. The diffraction amplitudes (flat events) are

equalized to the reflections (other events).

For this case, we started by devising a kNN classifier using

only two classes (N = 2): the diffraction classC0 and the non-
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Figure 6: Normalized dataset.

(a)

Offset (km)

T
im

e
 (

s
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.4

0.8

1.2

1.6

2.0

(b)

Offset (km)

T
im

e
 (

s
)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

0.4

0.8

1.2

1.6

2.0

Figure 7: Diffraction panels at 2.5 km obtained from the (a)

raw data and (b) normalized data.
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Figure 8: Image points classified as belonging to the diffrac-

tion class by the kNN classifier.

diffraction class C1 (that includes both reflection and void im-

age points). To train the kNN classifier, we used the diffrac-

tion operators evaluated at the two isolated point diffractors

as training patterns for the diffraction class. The training pat-

terns for the non-diffraction class were the diffraction operator

at several locations, including reflector and void image points.

We then applied the so-trained kNN classifier to the diffrac-

tion operators of the whole normalized dataset. The result is

depicted in Figure 8.

We see that the method has correctly identified and positioned

all three diffractor points in the model, i.e., the two isolated

point diffractors used for the training and also the tip of the

reflector not used in the training process. Moreover, it has not

misidentified any additional points as diffractions.

Real data example: Ground Penetrating Radar dataset

For a more meaningful test, we applied this method to GPR

data. The data set is from a survey conducted over four metal

drain pipes crossing under a road at the University of Houston

Coastal Center, located in La Marque, Texas, United States

© 2011 SEG
SEG San Antonio 2011 Annual Meeting  4401

Downloaded 29 Feb 2012 to 143.106.96.234. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Diffraction imaging point of common-offset gather

(a)

Dataset

Distance (m)

T
im

e
 (

n
s
)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

10

20

30

40

50

60

70

80

(b)

Figure 9: (a) Metal pipes located in La Marque, Houston,

Texas, United States. (b) 250 MHz GPR profile showing

diffractions from the pipes.

(Figure 9a). Since the survey line was perpendicular to the di-

rection of the pipes, prominent diffractions from the pipes oc-

cur. Because of the high reflectivity and attenuation of metal,

GPR reflections from the pipes occur only from the exterior of

the pipes and not from inside de pipes (Zeng and McMechan,

1997). Figure 9b shows the 250 MHz GPR profile acquired.

The distance between the transmitter and reciever antennas

was 0.28 m (half-offset 0.14 m), and the interval between

traces was 0.05 m A total of 445 traces were collected along

the 22.25 m survey line. The length of the time window was

99 ns and the number of samples per trace was 247, resulting

in a time sampling rate of 0.4 ns.

Figure 10a shows the profile of Figure 9b after normalization,

and Figure 10b shows the diffraction panel for the profile lo-

cated at x= 10m obtained from the normalized data.

The Kirchhoff time-migrated section of the GPR data is shown

in Figure 11a. The velocity used for migration was 0.088 m/ns

(0.88x108 m/s). This velocity collapsed all diffractions and is

within the expected range for soil mixtures. Figure 11b shows

the result of the diffraction imaging approach using pattern

recognition with the kNN classifier algorithm trained on the

synthetic data as detailed above.

As we can see in this figure, the kNN classifier was success-

fully applied to the real field data from GPR. Comparing the

section migrated (see Figure 11a) with section classified (see

Figure 11b) we can see that the kNN classifier did not produce

any false positives and that all four diffractions were clearly

identified.

CONCLUSIONS

In this work, we used the diffractor operator proposed by Tabti

et al. (2004) as a tool for diffraction imaging. It consists of

a straightforward application of a pattern recognition tech-

nique to identify and distinguish diffraction events from reflec-

tion events and noise areas by their amplitude pattern. In our

Normalized dataset

Distance (m)

T
im

e
 (

n
s
)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

10

20

30

40

50

60

70

80

(a)

Offset (m)

T
im

e
 (

n
s
)

Diffractor panel at 10.0m

−3 −2 −1 0 1 2 3

10

20

30

40

50

60

70

80

(b)

Figure 10: (a) GPR data normalized. (b) The diffraction panel

for the profile located at x = 10 m.
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Figure 11: (a) Time-migration profile. (b) Four diffraction lo-

cations identified by kNN classifier.

numerical experiments, the approach based on the k-nearest-

neighbours (kNN) classifier showed promising results. After

training with selected diffraction operators pertaining to a syn-

thetic data set from a very simple synthetic model, the kNN

classifier was able to correctly detect all diffraction points not

only in a complicated synthetic data sets, but also in a real

GPR dataset, not missing a single point and not creating a sin-

gle false positive.
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