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Abstract

The continuous wavelet transform utilizing a complex Morlet analyzing wavelet has a
close connection to the Fourier transform and is a powerful analysis tool for decomposing
broadband wavefield data. A wide range of seismic wavelet applications have been
reported over the last three decades, and the free Seismic Unix processing system now
contains a code (succwt) based on the work reported here.

Introduction

The continuous wavelet transform (CWT) is one method of investigating the time-frequency
details of data whose spectral content varies with time (non-stationary time series). Moti-
vation for the CWT can be found in Goupillaud et al. [12], along with a discussion of its
relationship to the Fourier and Gabor transforms.

As a brief overview, we note that French geophysicist J. Morlet worked with non-
stationary time series in the late 1970’s to find an alternative to the short-time Fourier
transform (STFT). The STFT was known to have poor localization in both time and fre-
quency, although it was a first step beyond the standard Fourier transform in the analysis of
such data. Morlet’s original wavelet transform idea was developed in collaboration with the-
oretical physicist A. Grossmann, whose contributions included an exact inversion formula.
A series of fundamental papers flowed from this collaboration [16, 12, 13], and connections
were soon recognized between Morlet’s wavelet transform and earlier methods, including
harmonic analysis, scale-space representations, and conjugated quadrature filters. For fur-
ther details, the interested reader is referred to Daubechies’ [7] account of the early history
of the wavelet transform.

Here we describe implementation details of the CWT as applied to wavefield measure-
ments, using reflection seismic data as a specific example. A classic paper in the gen-
eral field of time-frequency decomposition of reflection seismic data is Chakraborty and
Okaya [4]. They discuss the short-time Fourier transform, continuous wavelet transform,
discrete wavelet transform, and matched pursuit decomposition, but application to real
seismic data is limited to the matched pursuit method.

The CWT implementation described here uses a complex Morlet analyzing wavelet. As
a time-domain gaussian-tapered complex exponential, this particular wavelet has a natural
and compelling connection to the venerable Fourier transform. An inventory of several
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other analyzing wavelets can be found in the excellent summary paper of Torrence and
Compo [35].

Fourier Transform

We will use the convention that a time function, g(t), and the Fourier Transform (FT) of
that function, g(ω), are in the time or frequency domain as indicated by the argument list
rather than some variation on the function symbol.

The forward FT is defined as usual

g(ω) =

∫ ∞
−∞

g(t) eiωt dt , (1)

where scaling constants have been omitted, i =
√
−1, and ω is angular frequency related to

linear frequency (f in Hz) by ω = 2πf . The function g(ω) is complex, and can be expressed
in polar form g(ω) = Aeiθ to reveal the amplitude spectrum, A(ω), and phase spectrum,
θ(ω). The inverse FT is given by

g(t) =

∫ ∞
−∞

g(ω) e−iωt dω . (2)

We define the Dirac delta function heuristically as the unit spike function

δ(t− t0) =

{
1, t = t0
0, t 6= t0

. (3)

A key feature of δ(t) is the sifting property it exhibits under the action of integration∫ ∞
−∞

δ(t− t0) g(t) dt = g(t0) , (4)

It is customary to remark that the FT decomposes a transient time signal (data) into
independent harmonic components and, therefore, the function g(ω) has exact frequency
localization and no time localization. In other words, the FT can precisely detect which
frequencies reside in the data, but yields no information about the time position of signal
features. We can investigate this claim by considering the FT impulse response.

Let g(t) = δ(t− t0), take the FT, and apply the sifting property to yield

g(ω) =

∫
δ(t− t0) eiωt dt = eiωt0 . (5)

Recognizing the result is already in polar form, we see the amplitude spectrum, A = 1,
contains no information about the time location of the spike. The phase, however,

θ = ω t0 = 2πft0 , (6)
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is linear, and the spike location, t0, is encoded in the phase slope. For this elementary case
the spike location can be recovered exactly by

t0 =
1

2π

dθ

df
. (7)

More challenging is the case of two spikes

g(t) = δ(t− t1) + δ(t− t2) (8)

that transforms to
g(ω) = eiωt1 + eiωt2 (9)

and which can be written in terms of ∆t = t2 − t1 as

g(ω) = eiωt1
(
1 + eiω∆t

)
. (10)

The accessible spike time information in this function lies in the amplitude rather than the
phase spectrum. Specifically, consider the zeros of the amplitude spectrum

|g(ω)| =
∣∣∣eiωt1∣∣∣ ∣∣∣1 + eiω∆t

∣∣∣ = 0 . (11)

By definition, the first right-side term is never zero, meaning the equality can only hold if

eiω∆t = −1 (12)

iω∆t = ln(−1) (13)

i2πfn∆t = i(2n+ 1)π (14)

fn =
2n+ 1

2∆t
; n = 0, 1, 2, ... (15)

where fn is the nth notch frequency. This relationship says that if we can observe the
frequency associated with, say, the first spectral notch, f0, then we can calculate the time
separation of the spikes using

∆t = t2 − t1 =
1

2f0
. (16)

This accomplishment is a muted victory since we do not find the absolute spike times, only
the delay between them. Furthermore, even this weak result breaks down if the spikes have
different amplitudes (no hard zeros develop in the spectrum), or we move on to the three-
or N-spike case. We conclude that although there is some time localization information in
the Fourier transform, it quickly becomes an unreasonable exercise to extract it for even
simple impulsive time functions.

Something better is needed, and that something is a wavelet transform.
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Wavelet Transform

The continuous wavelet transform can be defined in a variety of ways that differ with respect
to normalization constants and conjugation. We define the transform as

g(a, b) = ap
∫ ∞
−∞

g(t) ψ

(
t− b
a

)
dt , (17)

where ψ(t) is the analyzing wavelet, b is a time-like translation variable, a is a dimensionless
frequency scale variable, and p is a real normalization parameter. As with the FT, we use
the argument list to indicate whether g() is in the physical domain, g(t), or the transform
domain, g(a, b). This convention is routinely used in geophysics where multidimensional
transforms are often encountered [6, 23].

For reconstruction of the original time series, the inverse CWT is in principle given by
the double integral

g(t) =

∫ ∞
−∞

∫ ∞
−∞

g(a, b) ψ′
(
t− b
a

)
da db , (18)

where the inverse analyzing wavelet ψ′ need not be the same as the forward transform
wavelet. As discussed by Torrence and Compo [35], if the inverse wavelet is chosen to be a
delta function the b integral can be done analytically via the sifting property of the delta
function. The inverse is then simplified to the real part of the summation over scales

g(t) = Re

(∫ ∞
−∞

g(a, t) da

)
. (19)

Complex Morlet Wavelet

As discussed earlier, the Fourier transform kernel is given by

KFT = ei2πft . (20)

where i =
√
−1 and f is frequency in Hertz. The kernel in a continuous wavelet transform

is simply the analyzing wavelet,
KCWT = ψ(t) . (21)

For wave-like data a good choice for the analyzing wavele is the complex Morlet wavelet

ψ(t) = e−(t/c)2 ei2πf0t , (22)

where t is time, f0 is a frequency parameter, and c is a damping parameter with units of
time. This equation describes a time-domain function that is the product of a gaussian and
a complex exponential, and whose center frequency is f0.

The frequency domain representation of the complex Morlet wavelet is

ψ(f) = e−(cf)2 ∗ δ(f − f0) , (23)
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where normalization factors have been omitted, and ∗ denotes convolution. This is, again,
a gaussian function, now centered in the frequency domain on f0.

There are several choices that can be made with respect to wavelet normalization. Our
definition, equation 22 along with p = 0 in equation 17, normalizes the time-domain peak
amplitude.

Comparing the leading terms in equations 22 and 23, we see a duality that expresses
the characteristic CWT resolution trade-off. The damping parameter, c, controls the rate
at which the time-domain wavelet, and frequency domain spectrum, is driven toward zero.
As time localization increases (large c), frequency localization decreases, and vice versa.
We have chosen to write the complex Morlet wavelet in this particular form and notation
to emphasize the central role of the damping factor. The value of this parameter has a
first-order effect on any CWT result. In fact, in the limit as c → ∞ the Morlet wavelet
defined here becomes equal to the Fourier kernel.

Figure 1 illustrates the time-frequency resolution properties of the complex Morlet
wavelet. In this example, a 60 Hz Morlet wavelet (A) is shown with the real part as a
solid line and imaginary part dashed. The damping parameter is c = 1/120, resulting in
a gaussian-tapered amplitude spectrum (B). Lowering the center frequency to 30 Hz and
using c = 1/60 gives a wider time-domain wavelet (C) and a narrower frequency spectrum
(D). It should be noted, that these results are not dependent on the absolute size of the
frequencies being considered, similar plots could be constructed for 60 and 30 MHz.

Note the choice of damping parameter in Figure 1 as the inverse of twice the center
frequency of the wavelet. Using this value will preserve a wavelet time span equal two times
its period.

When used to compute the CWT, the argument of the analyzing wavelet (equation 22)

is translated and scaled, ψ
(
t−b
a

)
. The effect of scaling is two-fold. In the real exponential,

the scale value multiplies the damping parameter, effectively broadening the time-domain
extent of the wavelet. In the complex exponential, the scale divides the frequency, lowering
it precisely enough to maintain the number of time-domain oscillations.

Scales and Frequencies

The continuous wavelet transform represented by equation 17 is related to convolution as
evidenced by the appearance of (t− b) in the integral. Thus, the CWT can be written as

g(a, t) = g(t) ∗ ψ(t/a) , (24)

showing the CWT can be implemented as a series of complex-valued time domain convo-
lutions. Each convolution involves the input data and a version of the analyzing wavelet
modified by the scaling variable. Strictly speaking, the CWT is an inner product, or the
zero lag of a complex-valued correlation, that can be expressed as a convolution under cer-
tain symmetry conditions. The CWT as a cross-correlation is understandable since we are
matching similarities between the signal and the analyzing wavelet.

From a computational point of view, complex time-domain convolutions are highly in-
efficient. The mathematical form of equation 24 suggests implementation in the Fourier
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Figure 1: Complex Morlet wavelet in the time and frequency domain. (A) 60 Hz Morlet wavelet
showing real (solid) and imaginary (dash) parts. The damping parameter is c = 1/120. (B) Fourier
amplitude spectrum of the 60 Hz Morlet wavelet showing characteristic gaussian shape. (C) A 30 Hz
Morlet wavelet (c = 1/60) has longer time duration, but the same number of oscillations. (D) The
amplitude spectrum of the 30 Hz wavelet is narrower because the time-domain function is wider.

domain where the convolution will become multiplication. Recalling the Fourier transform
scaling property for a general time function g(t)

FT{g(t/a)} = a g(af) , (25)

we can write equation 24 in the Fourier domain as the compact and efficient result

g(a, t) = FT−1{a g(f) ψ(af)} . (26)

A fundamental contribution of Morlet’s early work [12] was recognition that the natural
sampling of this scale variable is dyadic (i.e., logarithmic, base 2). If the wavelet is dilated
by a factor of 2, this means the frequency content has been shifted by one octave. The
analogy with music and singing clear, and is perpetuated by defining the scale range in
terms of octaves and voices. The number of octaves determines the span of frequencies
being analyzed, while the number of voices per octave determines the number of samples
(scales) across this span.

Specifically, let the number of octaves in a CWT be No and the number of voices per
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octave be Nv. The octave and voice indices progress as

io = 0, 1, 2, ..., No − 1 (27)

iv = 0, 1, 2, ..., Nv − 1 . (28)

The scale value for a given octave io and voice iv is given by

a = 2(io+iv/Nv) , (29)

and it follows that the smallest scale value is 1 and the largest is

a = 2(No−1/Nv) . (30)

The scales are referenced to an index that progresses as

ia = 1, 2, ..., No Nv . (31)

that can be calculated with the scales themselves by the double loop

ia = 1

for io = 0, No - 1 {

for iv = 0, Nv - 1 {

a(ia) = 2^(io+iv/Nv)

ia = ia + 1

}

}

that can be precomputed before any convolutions are performed.
The appropriate range of octaves and scales depends on the spectral content of the

data, and the highest requested frequency in the CWT. In this paper we will always take
the highest CWT frequency to be the Nyquist frequency. This is a safe choice, but there is
some minor inefficiency because data is usually sampled in such a way that nyquist is well
above the highest signal frequency.

We now have the components necessary to relate scales and frequencies. Consider a
CWT consisting of 5 octaves and 10 voices per octave. Figure 2A shows a plot of scale index
versus scale value for this case. The scale values range from 1 (ia = 1) to 29.86 (ia = 50). To
associate a frequency with each scale, we must specify the maximum frequency in the CWT
transform, which is also the initial frequency of the analyzing wavelet. Lower frequencies are
generated when this initial frequency is divided by successive scale factors. Using a typical
seismic example of dt = .004 seconds, the Nyquist frequency is 125 Hz and the scale values
map into frequencies as shown in Figure 2B. We will retain this scale-frequency relationship
in the examples that follow. It must always be remembered that a CWT scale does not
correspond to a single Fourier frequency, a gaussian spectrum peaked at the Morlet central
frequency.

By choosing 5 octaves descending from a Nyquist frequency of 125 Hz, the lowest fre-
quency in the CWT is 125/29.86 = 4.2 Hz. Typical acquisition procedures for petroleum
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Figure 2: Relationship between scale values and frequencies. (A) Plot of scale index versus scale
value for a 5 octave, 10 voice continuous wavelet transform. (B) By assuming the highest frequency
in the transform is Nyquist (125 Hz in this case), each scale can be associated with a particular
frequency.

seismic data does not preserve frequencies below 5 Hz, so we conclude that a 5-octave
transform should adequately span the spectral content of such data.

One last implementation detail is specification of the damping parameter, c, discussed
earlier in relation to the Morlet wavelet definition (equation 22). If dt is the time sample
rate, and the highest CWT frequency is Nyquist, and we want one full expression of the
wavelet (no more) at every scale, then the appropriate value is c = dt. This gives fine
time-localization of the CWT, at the expense of poor frequency resolution. In applications
requiring better frequency localization a larger value of c should be used. A version of
the CWT described here is available as succwt (source code succwt.c) in the Seismic Unix
processing system [5].

Figure 3 illustrates the response of a 5 octave, 10 voice CWT to impulse data. The
data (A) consists of zero values except for a unit amplitude spike at one point. The real
part of the c = 0.004 CWT impulse response (B) is a time-localized feature that becomes
progressively lower-frequency at larger scales. This is consistent with the scale-frequency
mapping in Figure 2. The maximum amplitude on each scale trace is shown, confirming our
choice to normalize the transform on time-domain peak amplitude (p = 0 in equation 17).
The c = 0.008 CWT impulse response (C) shows more oscillations in the analyzing wavelet
leading to more frequency localization.

A sense of the broad range of seismic topics amenable to wavelet transform analysis
can be gained from Table 1. This list shows published applications along with the author
name(s) and year. Only the first occurrence of any particular application is reported. It is
derived from the citation search index maintained by the Society of Exploration Geophysi-
cists (SEG). This index [33] includes publications of the SEG, Canadian SEG, Australian
SEG, and European Association of Geoscientists and Engineers.

Any such compilation is limited. Significant workers in the field (such as J. Morlet, A.
Chakraborty, and F. Herrmann, to mention a few) may not be represented if they worked in
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Figure 3: Continuous wavelet transform (CWT) impulse response. (A) Input data consisting
zero values and one unit-amplitude spike. There are 500 time samples and the time sample rate
is dt = .004 seconds. (B) Real part of the CWT of the data using c = 0.004. This is a 5 octave,
10 voice CWT with maximum frequency of 125 Hz (Nyquist). The scale axis is associated with
frequency through Figure 2. (C) Impulse response using c = .008.

fundamental, rather than applied, areas of the subject. Also, keyword searches are fragile,
a search on ‘wavelet transform’ may not catch a title containing ‘wavelet-packet transform’.
That being said, the table probably does a fair job of representing range and progress of
wavelet transform applications to reflection seismology data.

Examples

Figure 4 illustrates the kind of result CWT produces from reflection seismic data. The
data (A) is a marine 2D seismic section from offshore Thailand consisting of 200 migrated
traces. Each trace is 2 seconds long with time sample rate of dt = .004 s. The sea floor
is clearly visible, along with subsurface geologic features including faults and stratigraphic
terminations. A 5 octave, 10 voice CWT (c = .004) is computed from the center trace

9



and the amplitude spectrum is displayed (B). The scale axis corresponds to frequencies in
accordance with Figure 2.

As discussed earlier, we have chosen Nyquist to be the highest frequency in the trans-
form. Note the decay in amplitude beyond scale 45, indicating that our choice of 5 octaves
does, indeed, span the low frequency content of this data. One immediate observation is
the decay of bandwidth experienced by seismic waves that have travelled farther through
the earth. The sea floor reflection has significant energy from scales 45-8 (8-75 Hz), while
the deepest reflectors are limited to scales 45-15 (8-50 Hz) due to loss of high frequencies
by scattering and attenuation processes [23]. It follows that the CWT is a natural tool for
estimating subsurface attenuation.
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Figure 4: CWT of seismic data. (A) Migrated 2D seismic section. (B) CWT amplitude spectrum
of center trace (c = 0.004) (C) CWT amplitude spectrum of center trace (c = 0.004)

Although we can see the loss of bandwidth, the appearance of this CWT result is
strongly influenced by the damping parameter. With a value of c = 0.004, the CWT has
maximum time-localization but very poor frequency resolution. Computing the CWT with
c = .012 gives the result in Figure 4C. The bandwidth changes are more easily observed,
along with spectral notches associated with thin bed interference effects. These develop as
more oscillations are allowed in the analyzing wavelet.

By computing a CWT like the one shown in Figure 4 for every trace in a 3D migrated
seismic volume, we would generate a 4D volume of data whose coordinates are time, x-bin,
y-bin, and scale. From this a series of seismic 3D volumes could be extracted, each corre-
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sponding to a unique center frequency. This is the concept of the spectral decomposition
seismic attribute [15], although it should be mentioned there are methods available that
isolate individual frequencies better than the CWT. In petroleum seismology, attributes are
data types computed from primary amplitude data to visually enhance or isolate features
of interest, or calibrated to borehole measurements for reservoir property prediction.

Figure 5 shows an example of CWT spectral decomposition. The broadband data (A)
is a small subset of the offshore Thailand data. This section begins just below the sea floor.
From Fourier analysis, we find the frequency content is 8-72 Hz which gives a dominant
frequency of 40 Hz. Scale 15 of the CWT spectrum in Figure 4 represents a narrow band
50 Hz version of one input trace. Repeating this for all input traces, we can display a
narrow band expression of the seismic line, as shown in Figure 5B. Note that two intervals
between 1.5-2.0 seconds show anomalous behavior in the 50 Hz result. The value of spectral
decomposition is that, when calibrated to well control, such anomalies may be associated
with hydrocarbon reservoirs.

One of the great strengths of the CWT is the vast body of theoretical work associated
with it. It is more than just another time-frequency spectrum. Our second application
example, the Spice attribute [18], draws on this theoretical work, specifically regularity
analysis and the Hölder exponent.

To a skilled seismic interpreter the data in Figure 5A tells a story of faulting, uncon-
formities, and stratigraphy. In the mind of such an interpreter, a subsurface model would
evolve through long and detailed analysis of the seismic image. The Spice attribute (Fig-
ure 5C) represents an automated step toward that subsurface model. Where the seismic
image is a composite of many interfering thin bed reflection events and amplitude oscilla-
tions, the Spice result is a stratified subsurface model consistent with the observed data. As
the global search for petroleum demands better ways to extract information from seismic
data, Spice, and wavelet attributes yet undiscovered, are sure to play a role.

Conclusions

The continuous wavelet transform (CWT) utilizing a complex Morlet analyzing wavelet has
a close connection to the Fourier transform and is a powerful analysis tool for decomposing
broadband wavefield data. Care must be taken in choosing the range of octaves in the
transform, and particular attention must be paid to the time-domain gaussian damping
parameter.

Applied to reflection seismic data, the CWT can form the basis of spectral decomposition
or more exotic attributes such as Spice. A wide range of seismic wavelet applications have
been reported over the last three decades, and there is a trend related to development of
advanced interpretation tools. We anticipate quickening of this rate of innovation as wavelet
methods, move into general use. To aid this development, the free Seismic Unix processing
system now contains a code succwt based on the work reported here.
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Figure 5: Spectral decomposition and Spice. (A) Migrated 2D seismic section. (B) Narrow-band
data with center frequency of 50 Hz showing anamolous zones (dark). (C) Spice attribute computed
from the input data visualizes subsurface layering.
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Application Author Ref Year

Downward continuation LeBras et al. [17] 1992

Shear wave discrimination Niitsuma et al. [27] 1993

Seismic data processing Miao and Moon [26] 1994
Wavefield extrapolation Dessing and Wapenaar [10] 1994
Wave equation inversion Yang and Qian [40] 1994
Data compression Reiter and Heller [30] 1994
Trace interpolation Wang and Y. Li [37] 1994

Phase quality control Asfirane et al. [1] 1995
Migration Dessing and Wapenaar [11] 1995
Tomography X. Li and Ulrych [21] 1995
Sonic velocity characterization X. Li and Haury [19] 1995

Compressed migration Wang and Pann [38] 1996
Hilbert attribute analysis X. Li and Ulrych [22] 1996
Singularity analysis Cao [2] 1996
Signal-to-noise and resolution K. Li et al. [20] 1996
Deconvolution Marenco and Madisetti [25] 1996
Edge detection Dessing et al. [9] 1996

Velocity filtering Deighan and Watts [8] 1997
Reflection tomography Carrion [3] 1997
Borehole data upscaling Verhelst and Berkout [36] 1997
Spectral decomposition Gridley and Partyka [15] 1997
Amplitude versus offset Wapenaar [38] 1997

Reflector characterization Goudswaard and Wapenaar [14] 1998
3D seismic sequence analysis Yin et al. [41] 1998

Thin bed analysis Zhu and Q. Li [42] 1999
Complex media characterization Pivot et al. [29] 1999

Direct hydrocarbon detection Sun et al. [34] 2002

Reservoir characterization Osorio et al. [28] 2003
Time-frequency attribute Sinha et al. [31] 2003

Spice attribute C.-F. Li and Liner [32] 2004

Group velocity imaging Liner, Bell, and Verm [24] 2009

Table 1: Some published applications of the wavelet transform to petroleum seismic data.
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