Ground-roll Inversion for S-wave Velocity: Meteor Crater, Arizona

by Soumya Roy, Ph.D. Student Supervisor: Dr. Robert R. Stewart

Allied Geophysical Laboratories (AGL) Meeting and Research Day

University of Houston 29th April, 2011

Overview

Motivation and Objective

- Near-surface problems

Methodology

- Frequency based ground-roll inversion method

Barringer (Meteor) Crater, Arizona

- Geological Setting
- Seismic experiments

Results and Interpretations

- S-wave velocities (V_s) and identifying geological features

Applications and Future works

- Density prediction - S-wave statics - 3D Tomography

Motivations and Objectives

- Study of the near-surface velocity structure
 - Low-velocity, unconsolidated layers
 - Near-surface effects propagate deeper
- A good estimation of V_S required for multicomponent seismic analysis
- Identify geological features using estimated V_S variations
 - Thickness of a low-velocity, unconsolidated layer at Meteor Crater, AZ
 - Correlation of the results with known information
- Time delays in seismic waves (Statics problem)

$$t_{\text{Statics}} = \sum \Delta z_i / V_i$$

Methodology

- Multichannel Analysis of Surface Waves (MASW)
 - Generation of dispersion curves (phase velocity versus frequency plots)
 - Inversion of dispersion curves to estimate V_s

Different Seismic Data Sets

Modeling data

- Numerical modeling: Finite-difference elastic modeling (Manning, 2007)
- Physical modeling: Ultrasonic measurements on glass model

Field data

- Barringer (Meteor) Crater, AZ
- La Marque Geophysical Observatory, TX
- Yellowstone-Bighorn Research Association (YBRA), MO

Barringer (Meteor) Crater, AZ

Source: Satellite image from Google Earth

Meteor Crater: An Unique Astrobleme

Seismic Experiments at Meteor Crater

- Source interval: 2-3 m
- Receiver interval: 2-3 m
- Source type: 10 lb sledgehammer, Accelerated Weight Drop

Result: Dispersion curve and S-wave velocity

Interpretation: Meteor Crater

Conclusions

- Ground-roll inversion is a simple, robust, noninvasive, and low-cost method
- 2D S-wave velocity structures can be obtained
- A broad range of S-wave velocities are estimated:

Vs (m/s)	Numerical Model	Physical model	YBRA, MO	La Marque, TX	Meteor Crater, AZ
Known	500-740	3400	300-900	N/A	N/A
Ground-roll inversion	450-800	3200-3500	300-1000	100-500	200-1000

 Geological structures are identified based on the estimated S-wave velocity variations

Application: S-wave Low-velocity Statics

Application: Density from S-wave velocity

Gardner's Equation for S-wave: $\rho = 0.37 V_S^{0.22}$

Where, ρ in gm/cc and V_s in ft/s - (Potter and Stewart, 1998)

Future work: 3DTomography

- Construction of a picture of the internal values of an object from sum of those values
- Finding an integrand from various integral values (Stewart, 1991)

Acknowledgement

- Allied Geophysical Laboratories (AGL)
- My colleagues at AGL
- Dr. D. A. Kring (Lunar and Planetary Institute)
- Meteor Crater Museum
- Kansas Geological Survey

UNIVERSITY of HOUSTON