University of Houston

ANISOTROPIC INSIGHTS FROM PHYSICAL MODELING

JOSE JADSOM S. DE FIGUEIREDO DR. ROBERT STEWART

Authors list: Nikolay Dyaur, Robert Wiley, Bode Omoboya, Anoop William and Jörg Schleicher

OUTLINE

- Motivation
- Anisotropic sample preparation
- Physical modeling experimental setup
- Results
- Conclusions

MOTIVATION

Anisotropic cracked and fractured media shows up different directions of fracture sets

EXPERIMENTAL SETUP-ANISOTROPIC PHYSICAL SAMPLES

Round cracks

Strip cracks

Model	Crack density (%)	Measure distance (cm)	Number of Layers	[Diameter] (cm) – [aperture](cm) of cracks	Number of cracks per layer	Aspect– ratio
M1	Isotropic	7.31 ± 0.02	0	0	0	0
M2	4.5	7.29± 0.02	10	[0.7] - [0.091]	36	0.13
М3	3.8	7.32 ± 0.02	17	[0.4] - [0.051]	90	0.12
M4-1	6.2	7.64 ± 0.02	10	[0.7] - [0.091]	30	0.13
M4-3	5.2	7.74 ± 0.02	10	[0.44] -[0.091]	80	0.20
M4-5	3.8	7.74 ± 0.02	10	[0.32] - [0.091]	100	0.28

Based on Hudson's theory (1981)

Crack density $\rightarrow \quad \varepsilon = \frac{Na^3}{V}$

$$N_{cra/lay} = \left(\frac{\varepsilon}{100} * V_{mod}\right) / \left(N_{lay} * V_{cra}\right)$$

Where, $V_{cra} = 3.14^* \left(\frac{d}{2}\right)^2 * h$

EXPERIMENTAL SETUP -ULTRASONIC MEASUREMENTS

Pulse transmission technique

S-waves frequencies sources

RESULTS AND ANALYSIS

SCATTERING EFFECT

Anisotropic calculation

$$\gamma = \frac{1}{2} \left(\frac{V_{s1}^{2}}{V_{s2}^{2}} - 1 \right)$$

ATTENUATION ESTIMATION

Attenuation Q^{-1} for models M1, M2 and M3 respectively for the shear-wave polarizations S₁ and S₂.

	Fr	equencies(MH	Shift-time (ms)		
Model	w1(S1,S2)	w2(S1,S2)	w3(S1,S2)	t(w3)- t(w1) (S1,S2)	t(w2)-t(w1) (S1,S2)
M1	(0.082,0.082)	(0.377,0.377)	(0.514,0.514)	(0.4,0.4)	(0.2,0.2)
M2	(0.076,0.07)	(0.13,0.18)	(0.17,0.24)	(1.8,7.2)	(0.8,5.0)
М3	(0.073,0.067)	(0.18,0.08)	(0.24,0.156)	(0.8,1.8)	(0.4,0.7)

Applying Drift-time correction method (Stewart et al. , 1984)

$$t_{delay} = \frac{l \ln(w_j / w_i)}{\pi Q V(w_j)}$$

SIZE EFFECT- ANISOTROPIC PARAMETER

Shear wave velocity and anisotropic parameter γ

HIGH FREQUENCY: FRACTURES DIRECTIONS

S₁ polarization

S₂ polarization

HIGH FREQUENCY -FRACTURES DIRECTIONS

z V S₁ transducer

X

Common-offset transmission setup

13.35 cm

CONCLUSIONS

- Anisotropic parameter is influenced by relations between frequency source and crack densities.
- Shear-wave splitting has direct relation with: Dispersion
 Size of inclusions and aperture
 Apparent attenuation
- High frequency range can lead to important information about fracture reservoir management.

ACKNOWLEDGMENT

- Dr. Robert Stewart
- Dr. Robert Wiley
- Dr. Fred Hilterman
- Dr. Nikolay Dyaur
- Dr. Thomsen and Dr. Evgeny Chesnokov for their expert advices.
- AGL students (Anoop William, Bode Omoboya, Emrah Pacal, Mehdi Eftekharifar, Tania Mukherjee, Soumya Roy).
- All AGL sponsors
- CNPQ-Brazil.