

Applied Geophysics: Earth Atmospheric **University of Houston**

Robert R. Stewart Director, AGL

UNIVERSITY of HOUSTON

Presented to the AGL Update Meeting

April 29th, 2011

Welcome to UH and AGL!

- Overview of the day
 - 9:00am 10:30am Technical session 1 break
 - 10:45am noon Session 2 Iunch (provided)
 - 12:45pm 2:15pm Session 3 (AGL students) displays, lab, posters
 - 3:00pm Dobrin lecture (Thomas Bowman resource plays)
 - 4:00pm Student awards, discussion
 - 5:30pm Mucky Duck Pub reception

Thank you so much to our AGL supporters:

Interlocking geoscience partnerships

University's 4C mandate: Create Conserve Communicate, Commercialize

UH/AGL geophysics faculty & their expertise

UH Graduate Geophysics Courses Fall 2011

3-D Seismic Exploration I	40	Liner
Remote Sensing	80	Khan
3-D Seismic Exploration II	32	Hilterman
Graduate Seminar (Applied Geophysics)	48	Castagna
Graduate Seminar (Solid Earth)	30	Khan
Computational Geophysics	30	Castagna
Multicomponent Seismic Exploration	60	Stewart
Rock Physics	60	Castagna/Chesnokov
Petrophysics & Formation Evaluation	32	Myers
Seismic Wave & Ray Theory	60	Chesnokov
Geophysical Data Processing	60	Liner
Geophysics of Plate Margins	30	Hall

Geoscience at the **University of Houston**

Earth &

Atmospheric

UNIVERSITY of HOUSTON

- Pressing needs for better subsurface imaging, assessment, monitoring and personnel development
- Remarkable team of geophysical researchers and students assembled in the Allied Geophysical Lab
- Lots of exciting developments in land & marine acquisition and imaging – research needed
- AGL is looking to create further collaborations and projects with you (y'all)!
 Bakken shale (Hess & AGL)

SEG SRW 2011 summer research workshop

Auberge Saint Antoine, Quebec City, Canada 26–30 JUNE 2011

Society of Exploration Geophysicists The international society of applied geophysics

Organizing Committee

P. Williamson (Total), A. C. Ramírez (PGS), A. Cheng (Halliburton), S. Mallick (U. Wyoming), R. Lu (ExxonMobil), C. MacBeth (Heriot-Watt), K. Hokstad (Statoil), R. Stewart (U. Houston)

Time-lapse, 3C-3D imaging of SAGD reservoir changes

A. Kato¹ & R. Stewart² ¹JACOS, Tokyo ²University of Houston

Hangingstone heavy oilfield, Alberta

Primer on heavy oil

Heavy Oil Reservoirs

- 6 trillion barrels in place worldwide
 (= triple the total conventional oil/gas)
- Canada (1.7 trillion bbl)
- Venezuela (1.2 trillion bbl)

Athabasca Oil Sands

- Large deposit of heavy oil
- McMurray formation
- Estimated reserves : 133 billion bbl

SAGD Method

Steam Assisted Gravity Drainage (SAGD)

- 2 parallel horizontal wells
- Inject steam to heat reservoir and improve mobility of heavy oil
- Heated oil and condensed steam drain by gravity
- Steam movement is highly affected by geological heterogeneities within reservoirs (impermeable shale)

For reservoir management

Reservoir Delineation

During Production

Steam Monitoring

Curtis et al., (2005)

Study Area (Hangingstone Heavy Oilfield)

Hangingstone Oilfield

- JACOS has operated
- ➤ (Extra) heavy oil of 8.5° API gravity
- SAGD Production
- ➤ 10,000 barrels/day

Geology

- Formation :
- Lower Cretaceous McMurray formation
- Low-stand, fluvial-estuarine incised valleys
- Heavy Oil Reservoirs :
- Vertically stacked channel sands
- Horizontally and vertically very complex distribution
- About 300 m deep

* JACOS (Japan Canada Oil Sands Limited)

Takahashi et al., (2006)

Elastic Property Changes

2002

2006

Well B (10 kHz)

Heavy oil is assumed to be replaced by injected steam at higher temperatures than 200C.

Study Area (Hangingstone Heavy Oilfield)

- Time-lapse seismic data
 - □ Base Survey (2002) : PP

Analog geophone array

□ Repeat Survey (2006) : PP + PS

3 C digital sensors

Nakayama et al. (2008)

Three-term AVO Inversion

- Perform P-P and P-S joint three-term AVO inversion
- Use Bayesian theorem for constraints

Bayesian inversion

$$\hat{\mathbf{m}} = \left(\mathbf{G}^{\mathrm{T}}\mathbf{C}_{\mathrm{n}}^{-1}\mathbf{G} + \mathbf{C}_{\mathrm{m}}^{-1}\right)^{-1} \left(\mathbf{G}^{\mathrm{T}}\mathbf{C}_{\mathrm{n}}^{-1}\mathbf{d} + \mathbf{C}_{\mathrm{m}}^{-1}\mathbf{m}_{0}\right)$$

 C_n : Data covariance matrix (Data Uncertainties) C_m : Model covariance matrix (Prior information) m_0 : A prior mean values (Background model)

Basic concept of the method

P-P time lapse data $\begin{bmatrix} d_{PP02} \\ d_{PP06} \end{bmatrix} = \begin{bmatrix} A_{\alpha 1} & A_{\beta 1} & A_{\rho 1} & 0 & 0 & 0 \\ A_{\alpha 2} & A_{\beta 2} & A_{\rho 2} & A_{\alpha 2} & A_{\beta 2} & A_{\rho 2} \end{bmatrix} \begin{bmatrix} L_{\alpha} \\ L_{\beta} \\ L_{\rho} \\ \Delta L_{\alpha} \\ \Delta L_{\beta} \\ \Delta L_{\rho} \end{bmatrix}$

$$R_{PP} = A_{\alpha}(\theta)L_{\alpha} + A_{\beta}(\theta)L_{\beta} + A_{\rho}(\theta)L_{\rho}$$
$$R_{PS} = B_{\beta}(\theta)L_{\beta} + B_{\rho}(\theta)L_{\rho}$$

If P-S data is available in the repeat survey,

$$\begin{bmatrix} d_{PP02} \\ d_{PP06} \\ d_{PS06} \end{bmatrix} = \begin{bmatrix} A_{\alpha 1} & A_{\beta 1} & A_{\rho 1} & 0 & 0 & 0 \\ A_{\alpha 2} & A_{\beta 2} & A_{\rho 2} & A_{\alpha 2} & A_{\beta 2} & A_{\rho 2} \\ 0 & B_{\beta 2} & B_{\rho 2} & 0 & B_{\beta 2} & B_{\rho 2} \end{bmatrix} \begin{bmatrix} L_{\alpha} \\ L_{\beta} \\ L_{\rho} \\ \Delta L_{\alpha} \\ \Delta L_{\beta} \\ \Delta L_{\rho} \end{bmatrix}$$
Observation
Data
Forward Modeling Operator

Model Parameters

This process is repeated at each time step for angle-dependent amplitude data

Implementation with Field Data

Study Area : (1,100 m x 360 m)

8 SAGD well pairs penetrate the study area

Well	Steam injection	on star
Н, І	Feb. 2002	
J, K	Aug. 2003	
L	Jun. 2004	-
0, P, Q	Aug. 2005	-

Combination of PP and PS waves used in the inversion

1) 02PP
$$(\alpha, \beta, \rho)$$

2) 02PP + 06PP $(\alpha, \beta, \rho) + (\Delta \alpha, \Delta \beta, \Delta \rho)$
3) 02PP + 06PP + 06PS $(\alpha, \beta, \rho) + (\Delta \alpha, \Delta \beta, \Delta \rho)$

Initial elastic properties

Elastic property changes

Time-lapse inversion result

Vp change is consistent with interpretation based on start time of steam injection

Temperature Map

Using ΔVp – temperature, Convert ΔVp to temperature maps

Initial reservoir temperature : 11C

Summary: 4D-3C thermal mapping

Reservoir Delineation

- Developed P-P and P-S joint AVO inversion Bayesian inversion method
- Implementation with field data

Reservoir distribution map

Steam Monitoring

- Develop time-lapse AVO inversion Bayesian inversion method
- Implementation with field data

