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Abstract 

In this thesis, I investigated the use of bounding equations in complex porous 

multiminerallic lithologies to determine bounds for frame elastic moduli by considering 

different scenarios for porosity distribution.  Two different schemes for selection of end-

member components are considered.  Porosity–explicit mixing model considers each of 

the mineral constituents and the pore fluid as end–members of the mixture.  This 

approach requires the mixing of dissimilar constituents such as solids and fluids, resulting 

into elastic moduli bounds, generally, too wide to be useful in porous composites.  

Alternatively, porosity–implicit mixing model incorporates the porosity into single-phase 

end–member components. In this case, the elastic properties of porous rocks of differing 

composition are relatively similar and the corresponding bounds are much tighter than 

those obtained using porosity–explicit mixing.   

 

For a 5% evenly distributed porosity of a quartz-calcite mixture, Hashin-Shtrikman 

bounds (KHS) derived from porosity–implicit mixing model are very close when assumes 

a linear relationship between compressional velocity and composition: KHS+ - KHS- ≈0–

0.22 GPa.  However, by correlating compressional velocity to the 3/2 power of calcite, 

the bounds are much closer.  On the other hand, porosity–explicit mixing model yields 

very wide bounds, e.g. KHS+ - KHS- ≈ 43.9–67 GPa.  Approximately, porosity–implicit 

mixing model yields 96.5–100% tighter bounds than porosity–explicit mixing model.   
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Initially, the model investigated here is restricted to quartz and calcite minerals with both 

zero and evenly distributed porosity.  These results are compared to empirical results of 

Wilkens et al (1984).  Subsequently, effect of uneven porosity distribution between end-

members is added to the model.  Comparison of results shows that porosity distribution is 

an important aspect that needs to be taken into consideration.  As our model shows, if we 

assume an incorrect porosity distribution, the error on KHS+ and KHS-, with changing 

porosity φ = 1–13%, will be from 1.2% to around 19.1% and from 2.3% to around 25.7% 

respectively.  Results also show that uneven porosity distribution yields tighter bounds 

than even distribution, e.g. at φ = 7% KHS bounds with uneven distribution are 32.7% 

tighter than KHS bounds with even porosity distribution.  The results presented here are 

theoretically exact for dry rocks. 
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1. Introduction 

Seismic velocities depend on the lithology, fluid type and content of the formation: 

therefore, it is necessary to have accurate and exact information about relationships 

between elastic moduli or velocities and porosity, lithology, and fluid type. 

 

Empirical relationships between the compressional wave velocity Vp and shear wave 

velocity Vs in pure lithologies are commonly used in exploration geophysics. In this 

thesis work, I investigate the prediction of shear–wave velocity given compressional 

wave velocity and composition in mixed lithologies. To calculate compressional and 

shear wave velocities we need to know bulk modulus K, shear modulus μ, and density ρ, 

in order to apply them to widely used formulas shown below: 

                    

It is much easier to measure compressional wave velocity Vp, rather than shear wave 

velocity Vs.  Compressional wave velocities are usually measured using logging tools, 

seismic, but shear wave velocities are often not measured and must be estimated. 

Commonly, Vs is estimated from empirical Vp–Vs relationships, (e. g., Greenberg and 

Castagna, 1992).  In mixed lithologies, simple interpolations between predictions for pure 

lithologies are applied.  Here, I will investigate the use of bounding equations to constrain 

predictions in mixed lithologies. 

 

To usefully predict seismic velocities from rock properties alone we need to know details 

of the microstructure. However, if P–wave velocity and composition are known, 
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empirically it was proved (Greenberg and Castagna, 1992) that useful predictions of S–

waves can be made without explicit knowledge of microstructure.  Thus, by applying 

theoretical bounding equations like Reuss–Voigt and the tighter Hashin–Shtrikman 

bounds we should be able to theoretically explain empirical predictions of S–waves, and 

even make better estimates of shear wave velocities without direct measurements in 

mixed lithologies.  Basically, to accomplish this we need to know the elastic moduli of a 

mixed lithology rocks.  As will be shown, porosity distribution is a key assumption for 

elastic moduli prediction.  

 

Composite medium mixing models predict, or place bounds on, the properties of mixtures 

(i.e., aggregates) of rock–forming constituents.  In general, without knowing details of 

the microstructure, it is not possible to usefully predict seismic velocities from 

compositional data and theory alone. When applied directly to mixtures of pure 

constituents, such as minerals and fluids, bounding equations (such as the well known 

Reuss–Voigt bounds and the tighter Hashin–Shtrikman bounds) are generally too wide in 

porous rocks to be used in a practical way for seismic lithologic determination.  But again, 

it has been shown empirically (e. g., Greenberg and Castagna; 1992) that if P–wave 

velocity and composition are known, useful predictions of shear-wave velocity can be 

made.  This suggests that an alternative view of theoretical bounding equations could be 

found to explain the success of such methods, and to perhaps discover theoretically  

approaches that make better estimates of shear–wave velocities without direct 

measurements in mixed lithologies. 
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Specifically, the problem of predicting the elastic properties of a mixed–lithology rock 

given its mineral composition and porosity is addressed in this thesis.  A porous rock is a 

mixture and may be viewed as a composite medium consisting of an aggregate of 

minerals (including cements) and pore–filling fluid. The elastic properties of the 

composite depend not only on the properties and proportions of the constituents, but on 

the structural/geometrical arrangement of those constituents.  Composite medium theory 

relates the properties of the composite to the properties, proportion, and arrangement 

(including shape) of the constituents (Berryman, 1995).  Theories commonly used in 

geophysics include sphere–pack models (e.g., Gassmann, 1951) and inclusion models 

(e.g., Kuster and Toksoz; 1974).  In general, these theories over–simplify the actual 

arrangement of constituents and, though very useful for developing physical insight into 

the systematics of relationships, they cannot generally be used to make predictions in a 

quantitative sense without combination with empirical equations (e.g., Xu and White, 

1995).  Methods  considering complex structural arrangements, such as finite–element 

simulation (Lamb et al.; 1992), suffer from our general inability to adequately 

characterize the microstructural arrangement needed to simulate the elastic properties of a 

given rock (see for example Hadley; 1976).  Thus, methods of predicting composite 

properties that do not rely on specific knowledge of the structural arrangement of 

constituents are needed; models of this type require only the properties and proportions of 

the individual constituents (which are treated as end–members of the mixture).  Such 

mixing models may be (1) empirical in origin; based on statistical analysis of laboratory 

and/or well–log information (such as the well known time–average equation; Wyllie et al., 
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1956), (2) theoretical, in that even in the absence of precise structural information 

theoretical bounds can be established, or (3) some combination of the two (e.g., 

Greenberg and Castagna, 1992).  As a first step, the compositional system investigated 

here is restricted to two minerals, quartz and calcite.  This work will also demonstrate the 

effect of porosity distribution between end–members on the Hashin–Shtrikman bounds.  

Results of calculations made for rocks assuming equal distribution of porosity will be 

compared with those made on rock of the same mineral composition, but possessing 

unequal distribution of porosity. 

 

This thesis will investigate the use of bounding equations in complex porous 

multiminerallic lithologies to constrain and guide empirical prediction of rock frame 

moduli and shear–wave velocity given P–wave velocity and composition, and to 

determine bounds on frame elastic moduli given the elastic moduli of pure end–member 

lithologies, with particular emphasis on the choice of end–member components. In 

particular, assuming that mineral composition and porosity are known, two different 

schemes for selection of end-member components will be considered.  The first, 

porosity–explicit mixture modeling is the traditional approach that treats the pore–fluid as 

a distinct component, whereas the second, porosity–implicit mixture modeling 

incorporates the pore–filling fluid into the properties of the porous monominerallic end–

members.  Following Berryman and Milton (1991), the end–members are themselves 

porous and there is no explicit treatment of porosity as a constituent.  Porosity–explicit 

and porosity–implicit models have significantly different bounds.  When compared to 

laboratory measurements in a suite of low porosity rocks consisting primarily of quartz 
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and calcite of various proportions, it is found that selection of porosity–implicit end–

members (1) results in convergence of bounds thereby allowing relatively precise 

prediction of frame moduli given end–member moduli, (2) defines the form of empirical 

equations that can be used to fit the non–linear compositional dependence of velocity–

porosity relationships, and (3) results in improved prediction of shear–wave velocities 

given only compressional–wave velocities and mineral composition. 

 

Predictions made using both approaches will be compared to the empirical linear 

regression trends reported by Wilkens et al. (1984) in a suite of low porosity rocks 

containing primarily quartz and calcite as mineral constituents. 
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2. Theoretical Background 

2.1. Porosity–Explicit Mixtures 

 

For properties, such as density, for which there is a linear relationship between the 

property of the composite and the properties of the constituents, composite medium 

modeling can be accomplished with simple linear mixing equations.  In the case of 

density, the simple mass–balance equation is theoretically exact: 

1

(1 )
n

i i f

i

     


                                (1) 

where, 

= rock bulk density,  

  total porosity,   

density of pore-filling fluid,f   

fraction of total mineral volume occupied by mineral constituent , andi i   

number of mineral constituents.n   

 

The fractions of total mineral volume are defined such that: 

1

 1 .
n

i

i




  

If the pore–filling fluid is also a mixture, then the total fluid density can similarly be 

determined by mixing the fluid phases by a volume weighted linear average of the 

densities of the individual fluid phases. 
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If porosity is treated explicitly as the fraction of total rock volume occupied by pore–

filling fluid and the mineral constituent volume fractions are expressed as fractions of 

total rock volume then: 

1

1

 1 ,
n

i

i

X




  

where, Xi are the end-member volume fractions each for each mineral phase and the fluid, 

and the number of end–members is now one more than the number of mineral 

constituents (if the fluid is handled as a single phase).  Then, from equation (1): 

1

1

 ,
n

i i

i

X 




                                 (2) 

where, 
f  is one of the end–members densities, i , and   is one of the Xi. 

 

Other rock properties that are linear, or are nearly linear with composition or porosity 

over some range, may be treated in an analogous fashion.  For example, the slowness 

(reciprocal velocity) of compressional waves can sometimes be expressed in terms of 

constituent slownesses and volume fractions by a generalization of the time average 

equation (Wyllie at al., 1956) that is commonly used in well log analysis: 

1

1

 ,
n

p i i

i

t t X




                                   (3) 

where 

 bulk rock compressional-wave reciprocal velocity (transit-time) ,pt    

 end-member compressional-wave reciprocal velocity.it   
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In this case, the volume fraction of the fluid end–member is equal to the porosity, and the 

reciprocal velocity of the fluid end–member (the effective fluid transit–time) is one of 

the it . 

 

Although there is no theoretical basis for equation (3) for waves with wavelengths longer 

than the rock pores and grains, multiple linear regression of measured reciprocal velocity 

versus end–member volume fractions often yields regression coefficients that are close to 

the actual mineral and fluid reciprocal velocities (see for example Schlumberger log 

analysis chart books prior to 1980).  Thus, the Wyllie equation (3) can be viewed as a 

mixing model that explicitly treats porosity as an end–member component. 

 

Similarly, various authors (Tosaya, 1982; Wilkens et al., 1984; Castagna et al., 1985; Han 

et al., 1986) present linear velocity–composition–porosity relationships for well–lithified 

rocks that are in form algebraically equivalent to: 

1

1

 ,
n

i i

i

V V X




                                   (4) 

where, V is compressional–or shear–wave velocity of the bulk rock and Vi are apparent 

velocities of the mineral and fluid components (although the pore fluid may be a mixture 

of several fluid phases it will be treated in this thesis as a single phase with the properties 

of the fluid mixture).  Once again, the volume fraction of the pore fluid is taken to be 

equal to the porosity.  In practice, the apparent velocity of the dominant mineralogical 

constituent is usually close to the actual mineral velocity, whereas apparent velocities of 

minor constituents and the pore fluid may have little relationship to actual velocities 
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(which in the extreme case of shear–wave velocity for fluids should be zero).  There is no 

theoretical basis for equation (4) and the apparent velocities, Vi, are most properly 

thought of as being simply empirical coefficients.  However, equation (4) does constitute 

a commonly employed porosity–explicit mixing model and it will be instructive to 

compare this model to bounding equations of various kinds as well as to a porosity–

implicit mixing scheme discussed below. 

 

It is important to note that the apparent fluid velocity or reciprocal velocity is 

independent of mineral composition for all porosity–explicit models. Thus, for a 

porosity–explicit model to adequately describe the behavior of a composite medium, the 

variation of velocity with porosity must be independent of mineral composition.  Clearly, 

we would expect different porosity dependence in a vuggy limestone than for granular 

sandstone.  This is a fundamental inadequacy of the porosity–explicit approach. 
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2.2. Porosity–Implicit Mixtures 

 

Berryman and Milton (1991) discuss a composite medium (illustrated in Figure 1) where 

a porous rock with two mineral phases and one fluid phase (a porosity–explicit ternary 

mixture) is considered a binary mixture of two porous end–member lithologies (a 

porosity–implicit binary mixture). 

 

Figure 1: Two types of porous components (end–members) completely fill the 

volume of composite porous material (from Berryman and Milton, 1991). 
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We can generalize this view of mixtures to n porous end–member components whereby 

the explicit use of porosity as a constituent is avoided.  In this porosity–implicit approach, 

the end–members or phases are porous monomineralic rocks; the effects of the pore–fluid 

being implicitly contained in the properties of the porous end–members.  The number of 

end–member components is equal to the number of mineralogical components, n, and the 

fractions of total rock volume, xi, of the porous end–members sum to unity.  The resulting 

mixing models are analogous to those for porosity–explicit mixing with the exception 

that the pore–filling fluid is not explicitly considered.  Thus, for linear velocity mixing 

the analogy to equation (4) is: 

1

 ,
n

i i

i

V V x


                                 (5) 

where, the Vi represent velocities of the monomineralic porous end–member components 

rather than mineral or fluid constituent properties.  The velocities of the mineralogically 

pure components can be expressed as any applicable velocity–porosity transform, such as 

the Hicks (1956) linear velocity–porosity relation: 

  +  ,i mi iV V c                                  (6) 

where, Vmi are the velocities of the zero–porosity mineral constituents, and ci are 

empirical porosity coefficients.  In contrast to the porosity–explicit approach, where there 

is the same porosity dependence for all compositions, it is apparent in equation (6) that 

the velocity dependence on porosity is now dependent on composition.  There is also now 

an additional degree of freedom for each additional mineralogical constituent as 

compared to the porosity–explicit approach, so one must be careful to test the statistical 
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significance of resulting regression coefficients used to model observed velocity given 

porosity and composition data.  Practical experience suggests that statistical significance 

cannot always be achieved and that the additional degrees of freedom resulting from a 

porosity–implicit approach are not always justified by the data.  In this case, the ci can be 

set equal.  On the other hand, it should be intuitively obvious that if pore structure is 

lithology related, one should expect different velocity–porosity dependencies in 

lithologies that exhibit very different pore–type compressibilities. 

 

The use of equation (6) in a porosity–implicit mixing model is essentially a first order 

approximation, whereby the porosity is assumed to be the same in each end–member. 

This may not necessarily be an adequate representation of reality.  For example, consider 

a porous limestone with isolated quartz grain inclusions, where the porosity exists almost 

entirely within the limestone end–member. 

 

A more general application of porosity–implicit mixing allows the porosity to differ for 

the different end–members (Berryman, 1995) in which case equation (6) can be 

generalized to: 

  +  ,i mi i iV V c                                  (7) 

where, the  i are the porosities of each end–member lithology. This adds additional 

degrees of freedom to any empirical fit to observations; thus, it is easier to model 

observed behavior with equation (7) yet more difficult to achieve statistically significant 

regression fits.  It is generally good practice to first attempt to fit the observations with as 



 13 

few coefficients as possible, and then to add parameters in a stepwise manner based on 

physical reasoning that is then substantiated by statistical significance tests. 

 

The general porosity–implicit model reduces to a porosity–explicit mixture when the 

component porosities are taken to be zero for all end–members with the exception of a 

fluid–phase end–member which is assigned a porosity of 100%. 

 

A more rigorous theoretical analysis is needed before such simple empirical mixing 

models can be employed with confidence.  In particular, we would like to know if linear 

compositional dependence as expressed in equation (5) can be justified theoretically, or is 

at least consistent with theoretical bounding equations. 
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 2.3. Theoretical Bounds for Composites 

 

Let us assume that we are dealing with a macroscopically homogeneous composite of 

randomly oriented mineral constituents. Given the elastic moduli of the mineral 

constituents it is possible to calculate the moduli of the composite if certain assumptions 

are made.  For example, Voigt (1928) calculated the composite moduli by averaging over 

all crystal lattice orientations and assuming that the strain is the same throughout the 

composite when a given stress is applied externally.  Reuss (1929) did the same assuming 

that the stress is internally everywhere the same for a given overall strain of the 

composite.  Hill (1952) proved that these moduli constitute upper (Voigt) and lower 

(Reuss) bounds providing the assumption of macroscopic homogeneity is statistically 

valid.  While the individual minerals may be anisotropic, their random orientation results 

in the aggregate composite being isotropic.  Thus, it is common to speak of single 

mineral bulk and shear moduli even when the mineral crystal is anisotropic; in such cases 

it should be understood that the mineral moduli actually represent those for a zero–

porosity composite of randomly oriented mineral grains.  Defining the component moduli 

in this fashion, we can simply express the Voigt and Reuss bounds for an isotropic 

composite.  

 

Voigt and Reuss developed averaging schemes to estimate the elastic constants of 

monomineralic aggregates.  To apply Voigt and Reuss moduli on rocks they assumed 

separation of the individual rock components i.e. minerals, pore filling material, and their 

arrangement.  In the Voigt model, shown in Figure 2, the strain is the same throughout 
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the composite when a given stress is applied externally.  The n individual components are 

assumed to be isotropic, and their elastic properties are described by bulk modulus k, and 

shear modulus μ. The elastic moduli are: 

1 1

 ,   ,
n n

v i i v i i

i i

K x K x 
 

    

where, Kv is the composite Voigt–average bulk modulus, Ki are the component bulk 

moduli, xi are the component volume fractions, μv is the composite Voigt–average shear 

modulus, and μi are the component shear moduli. 

 
 

σ 

 

Figure 2. Fundamental model of Voigt (1910) 
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In the Reuss model (1927), shown on the Figure 3, the stress is homogeneous and the 

strain in each layer differs. The elastic moduli are: 

1 1

1/ /  ,  1/ /  ,
n n

r i i r i i

i i

K x K x 
 

    

where, Kr and μi are the composite Reuss–average bulk and shear moduli. 

 
σ 

 

Figure 3. Fundamental model of Reuss (1927) 

 

 

 

If we have isotropic effective material, the Voigt and Reuss bulk and shear moduli form 

bounds on the possible composite model.  Thus, the Voigt relationship leads to the upper, 

and the Reuss relationship to the lower bound.  The real values of elastic moduli are 

situated between these two bounds.  
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When the shear–modulus is the same for all constituents, the composite modulus is given 

by the simple average of the Voigt and Reuss bounds (Hill, 1963). This is called the Hill 

average.  
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2.4. Hashin–Shtrikman (1963) Bounding Equations 

 

The Hashin–Shtrikman bounds (Hashin and Shtrikman, 1963) are the tightest possible 

bounds achievable without specifying the arrangement or shape of the rock constituents. 

In their work, Hashin and Shtrikman have used variational principles to find bounds for 

the bulk and shear moduli of composite material.  Hashin and Shtrikman assume that the 

spatial distribution of each component is isotropic, but they did not specifically consider 

the geometry of the particles or inclusions.  For a two component material, these bounds 

can be easily visualized and correspond to the case of the rock volume being completely 

filled with spheres each of which contains two concentric layers of the different 

components.  The spheres span a size range from some maximum to infinitely small such 

that no voids are left unfilled in the total rock volume.  The Hashin–Shtrikman upper 

bound (HS+) corresponds to the case of the outer shell of each sphere being stiffer than 

the inner core of the sphere, while the lower bound (HS-) corresponds to the core being 

stiffer than the outer shell (Figure 4). Hashin and Shtrikman (1963) derive these bounds 

for multiple components, with the requirement that the bulk and shear moduli of the 

components have the same order of stiffness. Walpole (1966) later showed that the 

bounds are more broadly applicable and that the bulk and shear moduli need not to be 

ordered.  

 



 19 

 

 (a)                                                                                    (b)                          

Figure 4. Fundamental models of Hashin–Shtrikman. (a) Outer shell is stiffer than 

inner core, which leads to HS+. (b) Inner core is stiffer than outer shell leading to HS-. 

 

The Hashin–Shtrikman bounding equations for bulk modulus are: 

min

min

1

  ,

1

4

4 3

3

i

i

n

HS

i

x
K

K











 
 

  
 
 


    

max

max

1

  ,

1

4

4 3

3

i

i

n

HS

i

x
K

K











 
 

  
 
 


 

 

 

 

 

HS- 
Lower bounds 

HS+ 
Upper bounds 



 20 

The Hashin–Shtrikman bounding equations for shear modulus are: 

min

min

max

max

1

min min

1 min minmin min

min min

1

max max

1 max maxmax max

max max

9 8
  ,

6 29 8

6 2

9 8
  .

6 29 8

6 2

i

i

i

i

n

HS

i

n

HS

i

Kx

KK

K

Kx

KK

K





























 
 

            
   

 
 

            
   





 

where: 

 Kmin and Kmax are the minimum and maximum bulk moduli of the components;  

KHS- and KHS+ are the Hashin-Shtrikman lower and upper bounds for bulk modulus of the 

composite; 

μmin and μmax are the minimum and maximum shear moduli of the components; 

μHS- and μHS+ are the Hashin-Shtrikman lower and upper bounds for shear modulus of 

the composite. 

 

When the pore fluid is explicitly treated as a component, the minimum shear 

modulus, min , is zero, and it is apparent from equations shown above that the Hashin–

Shtrikman lower bound for bulk modulus of the composite (KHS-) reduces to the Reuss 
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bound for bulk modulus (Kr), while the Hashin–Shtrikman lower bound for the shear 

modulus ( HS  ) reduces to the Reuss bound for the shear modulus ( r ) and is zero. 

 

 Consequently, for porosity–explicit models, even the Hashin–Shtrikman bounds allow a 

wide range of composite bulk and shear moduli and are consequently not very useful for 

direct practical application.  This can be appreciated by considering tight sandstone, with 

less than 1% porosity, where experience dictates that the shear modulus will be a 

relatively large fraction of the shear modulus of pure quartz, whereas the Hashin–

Shtrikman bounds allow a shear modulus of zero.  Clearly, a porosity–explicit approach 

to the bounding equations is inconsistent with our physical insight in this case, and 

provides little guidance as to how to mix the moduli of end–member lithologies. 

 

In general, for bounds of any kind, the more similar the end–member properties, the more 

linear the compositional dependence of the composite property, and the tighter the 

bounds.  Conversely, when end–member properties are very dissimilar there is a greater 

likelihood for highly non–linear behavior with wide bounds. 
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3. Application of Bounds to Dry Quartz–Calcite Mixture 

 

Wilkens et al. (1984) measured compressional and shear–wave velocities in a suite of 

siliceous limestones from southeastern Oklahoma as a function of pressure for primarily 

dry samples, and presented regression trends relating velocities to composition and 

porosity.  In this section, these data are reinterpreted in the context of the mixing models 

and bounding equations discussed in Section 2. 

 

3.1. Form of the Regression Equation 

The regressions performed by Wilkens et al. (1984) at each pressure for both 

compressional and shear–waves were of the form: 

  ,qtz cal

cal

V V
V V  

 

 
  

 
                        (8) 

where, Vqtz is the velocity of quartz and  cal is the fraction of total mineral volume of 

calcite defined so that 

 cal = 1 –  qtz, 

where, qtz  is the fraction of total mineral volume of quartz.  Given that the volume 

fractions of calcite and quartz are perfectly negatively correlated as they are defined, the 

partial derivative must be interpreted in the sense that porosity is maintained constant 

while the volume fraction of quartz is not.  Evaluating (8) for pure zero–porosity calcite 

gives 
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   ,cal qtz

cal

V
V V




 


                          (9) 

where Vcal is the resulting velocity of calcite extrapolated by regression to zero porosity. 

Since, (1 )i iX    , then 

 .cal cal

cal cal

V V
X

X




 


                           (10) 

It can be shown using this identity that equation (8) is algebraically equivalent to 

equation (4).  Writing (4) for three constituents (quartz, calcite, and fluid) gives: 

 ,qtz qtz cal cal fluid fluidV V X V X V X                       (11) 

where Xfluid is the porosity or fraction of fluid and Vfluid is an empirical constant which can 

be loosely referred to as the effective fluid velocity given by: 

   .fluid qtz

V
V V




 


                   (12) 

Equation (11) is readily recast into a form suitable for interpretation of regression 

analysis in terms of physical parameters by eliminating the redundant parameter Xqtz: 

( ) ( )  .qtz cal qtz cal fluid qtz fluidV V V V X V V X                      (13) 

The mixing described by equations (11) and (13) is that of a porosity–explicit mixing 

model with mineral and fluid constituents being treated exactly the same way and with 

velocity linearly related to both composition and porosity.  The coefficients of equation 

(13) are readily interpreted in physical terms but the coefficient for porosity (Vfluid – Vqtz) 
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is forced to be independent of composition, which as previously discussed may not be 

desirable.  Furthermore, when the range of porosities or compositions is small, the 

regression coefficients may have little physical relation to actual component properties. 

The Wilkens et al. (1984) dataset has a low porosity and the resulting regressions yield a 

negative Vfluid for P–waves. 

 

Let us consider the regression coefficients given in Table 1 of Wilkens et al. (1984) for 

compressional and shear–wave velocities at 0.01 kbar as being representative of dry 

velocities for porous quartz–calcite mixtures.  Table 1 provides the Wilkens et al. (1984) 

coefficients in a form compatible with equation (11).  Although the extrapolated fluid 

velocities are not physical, the quartz and calcite velocities are reasonably close to 

experimental measurements (see for example Table 1 in Castagna et al, 1993).  It should 

be noted that the regressions for compressional velocity given by Wilkens include some 

water–saturated measurements, the assumption being that for very low porosities the 

velocities are almost insensitive to saturation.  It is possible that this contributes to the 

highly non–physical regression fluid velocity for compressional waves. 

 

Table 1: Empirical constants derived from regression coefficients given by Wilkens 

et al (1984) for dry porous rocks composed primarily of quartz and calcite at .01 

kbar. The units are km/sec. 

Compressional   Shear 

 

Vqtz                   6.05           3.70 

Vcal                    6.46           3.21 

Vfluid                  -7.14           0.51 
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3.2. Bounds for Zero Porosity Quartz–Calcite Mixtures 

 

Given equation (11) and the regression coefficients in Table 1, one can calculate the 

implied velocities of zero–porosity quartz–calcite mixtures by setting porosity to zero and 

varying the composition.  Using qtz = 2.65 gm/cc, cal = 2.72 gm/cc (as reported by 

Wilkens et al.1984), and fluid ≈ 0 for air, the density for each composition is given by the 

mass–balance equation and the elastic moduli are then obtained from the velocities.  The 

resulting relationships between velocities or moduli and composition may then be 

compared to the Reuss–Voigt and Hashin–Shtrikman bounds with end–member 

properties for quartz and calcite derived from Table 1.  The zero porosity trend for bulk 

modulus versus composition resulting from the Wilkens et al. (1984) regression 

coefficients is almost identical to the Voigt bound (see Figure 5a).  Without further 

theoretical analysis this can lead to the incorrect interpretation that the common practice 

of averaging Reuss and Voigt bounds to determine the properties of a zero porosity 

aggregate is inadequate for this suite of rocks and that the Voigt bound would be a better 

predictor than the Hill average.  

 

A physical interpretation of this phenomenon would be that this suite of rocks is so well–

lithified and the porosity so low (with relatively incompressible pores) that the strain is 

almost uniform throughout the rock.  To the contrary, Figure 5b also reveals that for 

zero–porosity quartz–calcite mixtures (1) the Hashin–Shtrikman upper and lower bounds 

are very close, (2) the Hill average is a good approximation to the Hashin–Shtrikman 

result (as the shear modulus is similar for quartz and calcite), and (3) the Wilkens et al. 
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(1984) regression trend violates the theoretically exact Hashin–Shtrikman bounds for 

bulk modulus.  

 

Figure 5a: Bulk modulus versus composition showing Wilkens et al. (1984) 

regression trend, the Hashin–Shtrikman upper (HS+) and lower (HS-) bounds, the 

Voigt–Reuss bounds, and the Hill average for a zero–porosity quartz–calcite 

mixture.  The regression trend almost coincides with the Voigt bound; and the 

Hashin–Shtrikman bounds are almost identical and are well approximated by the 

Hill average. 
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Figure 5b: Zoom of a portion of Figure 2a where the bulk modulus spread is 

greatest (in the vicinity of equal proportions of constituents). Slight differences 

between various curves are now apparent. 
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The most likely explanation for this discrepancy is that selecting equation (8) as the form 

used for regression analysis constitutes the arbitrary assumption that velocity is linearly 

related to composition in the quartz–calcite system; this assumption is apparently 

unwarranted.  Although the regression trend is nearly correct at the compositional 

extremes of pure quartz or calcite (as evidenced by reasonable agreement with pure 

mineral measurements) a non–linear relationship between velocity and composition is 

required by the Hashin–Shtrikman bounds, otherwise it is found that empirical mixing 

models that are linear in composition violate the porosity–explicit Hashin–Shtrikman 

bounds. 

 

A similar analysis for the shear modulus (Figure 6a and 6b) results in almost the same 

conclusions for a zero porosity quartz–calcite mixture.  As compared to the bulk modulus 

results, the regression shear modulus is not quite as close to the Voigt bound, and the Hill 

average is now within the almost identical Hashin–Shtrikman bounds. 

 

The fact that the Wilkens et al. (1984) regression trend, when extrapolated to zero 

porosity, violates theoretical bounds for bulk and shear modulus can be due to (1) 

experimental error, (2) unanticipated fluid effects, (3) inadequacies or misapplication of 

the theoretical equations, (4) extrapolation of regression trends beyond the range of 

porosities for which the measurements were made, and/or (5) improper form of the 

regression trend.  There is no reason to suspect that the data or theory is in error.  As the 

suite of rocks investigated by Wilkens et al. (1984) were low porosity it is unlikely that 

the disagreement is an extrapolation error. Similar discrepancies are also seen for porous 
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rocks (as shown below) so another explanation is needed.  The form of the regression 

trend selected by Wilkens et al. (1984) is the simplest form that can be chosen, and is 

thus the proper choice to use for regression unless there is compelling reason to choose 

otherwise.  This form has been used for most fits to experimental velocity data over a 

range of compositions (see for example Tosaya, 1982; Castagna et al., 1985; Han et al., 

1986;etc.).
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Figure 6a: Shear modulus versus composition showing Wilkens et al. (1984) 

regression trend, the Hashin–Shtrikman upper (HS+) and lower (HS-) bounds, the 

Voigt–Reuss bounds, and the Hill average for a zero–porosity quartz–calcite 

mixture. The regression trend is close to Voigt bound. The Hashin–Shtrikman 

bounds are almost identical and bound the Hill average. 
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Figure 6b: Zoom of a portion of Figure 6a where the shear modulus spread is 

greatest (in the vicinity of equal proportions of constituents). Slight differences 

between various curves are now apparent. 

 



 32 

One could conclude that violation of theoretical bounds is ample reason to consider a 

regression form that is non–linear in composition if justified by the data. It remains to be 

seen if the experimental error is so large as to make the non–linearity required by 

theoretical bounds irrelevant for practical purposes.  There were insufficient velocity 

measurements at zero porosity to directly answer this question for the Wilkens et al. 

(1984) dataset, so this issue will be considered again below in the context of the full suite 

of velocity measurements. 
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3.3. Porosity–Explicit Bounds for Dry Porous Quartz–Calcite Mixtures 

 

Unfortunately, things are not so simple for porous rocks.  In contrast to the zero porosity 

case, where the Hashin–Shtrikman bounds and the Hill average are excellent predictors 

of mixture properties, these equations are far less helpful in porous rocks when pore 

filling fluid (such as water or air) is explicitly considered a component of the mixture.  If 

we model the suite of dry rocks investigated by Wilkens et al. (1984) as ternary mixtures 

of quartz, calcite, and air, at 5% porosity the bounds are too wide to be useful and the Hill 

average is not close to the Wilkens et al. (1984) regression trend for bulk and shear 

moduli (Figures 7 and 8).  
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Figure 7: Bulk modulus from Wilkens et al. (1984) regression trends and porosity 

explicit bounds for 5% porosity. The Reuss and Hashin–Shtrikman lower bounds 

are near zero for air-filled pores. 
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Figure 8: Shear modulus from Wilkens et al. (1984) regression trends and porosity 

explicit bounds for 5% porosity. The Reuss and Hashin–Shtrikman lower bounds 

are zero. 
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Also, Figure 9 illustrates that the traditional model of a porous mixture with two minerals 

(quartz and calcite) is actually a ternary mixture of three end–member components 

(calcite, quartz and water or air).  Mixing equations that deal with porosity explicitly in 

this way include the Wyllie time–average and Raymer–Hunt–Gardner equations when 

applied to complex lithologies using an “effective” mineral transit–time or velocity, and 

the velocity average equations popularized by Tosaya (1982), Wilkens et al., (1984), 

Castagna et al., (1985) and Han (1986) among others.  These equations all deal with the 

minerals and fluids equally as end–members of the system.  In this case, as shown in 

Figure 10 for a 5% porosity dry rock, the bounds are too wide to be useful for predictive 

purposes.  Notably, the lower bounds are off the scale (e.g., zero for shear modulus). 
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Figure 9: A porosity–explicit representation of a porous quartz–calcite rock as a 

ternary mixture of quartz, calcite, and fluid such as water. Examples of such models 

include the Wyllie time–average, the linear velocity average, and the Raymer–Hunt–

Gardner equations. 
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Figure 10: Bulk modulus (k) and shear modulus (µ) for a 5% porosity mixture of 

quartz and calcite. Regression fits by Wilkens et al. (1984) are shown in brown for 

bulk modulus and purple for shear modulus. The dashed lines are Voigt bounds. 

The thin solid lines are the Hashin–Shtrikman upper bounds for bulk and shear 

modulus. The lower bounds are too low to appear on the chart. 
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3.4. Porosity–Implicit Bounds for Dry Porous Quartz–Calcite Mixtures 

 

In the porosity–implicit approach, explicit ternary mixtures of quartz, calcite, and pore 

fluid are modeled as binary mixtures of porous quartz and porous calcite. The results 

depend on how the porosity is apportioned between the end–members. This may be done 

in a variety of ways: 

(1) The simplest way to apportion porosity is to make it the same for both end–

members.  This would be a reasonable approach for a granular rock where the 

porosity is between randomly distributed grains. 

(2) The tightest bounds will occur if the porosity is apportioned so as to make the 

shear modulus equal in both end–members, giving the simple Hill average. 

Although mathematically simple, this approach is difficult to justify. 

(3) The porosity is distributed in the most petrologically reasonable way based on 

whatever a priori information are available, and/or to best fit the data. 

Furthermore, the distribution of porosity between end–members could be made 

dependent on composition. 

In this thesis, the first and third approaches will be investigated. 

 

The Wilkens et al. (1984) regression trends are used to calculate the bulk and shear 

moduli for pure porous sandstone or limestone end–members and the bounding equations 

are then used to calculate the moduli that result from mixing these lithologies.  Figures 10 

and 12 show the results, for a total porosity of 5% that is equally apportioned between 

sandstone and limestone.  It can be seen that the bounds are much tighter for porosity–

implicit than for the porosity–explicit case and that relatively precise predictions can be 
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made.  This is a consequence of the fact that in the porosity–implicit approach, the bulk 

and shear moduli of the end–members are similar. 

 

The porosity–implicit model suggests a non–linear relationship between P–wave velocity 

and calcite content that statistically fits the data of Wilkens et al. (1984) better than 

simple linear regression with the same number of variables. 
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4. Discussion of Bounding Equations for Composite Media 

 
The Hashin–Shtrikman bounds are tighter than the Reuss–Voigt bounds (Berryman, 

1995).  The upper Hashin–Shtrikman bounds (HS+) correspond to the case of a stiff 

matrix within, which soft spherical inclusions exist (an example would be a vuggy 

limestone).  The lower bounds (HS-) are the converse; the matrix is soft and the 

inclusions are stiff (an example would be shale consisting of a small percentage of 

rounded quartz grains completely encased in a clay “groundmass”).  The more or less 

similar end–member properties yield narrow and semi–linear bounds while very different 

end–member properties yield wide bounds, which can be highly non–linear with 

composition.  Thus, when porosity is explicitly considered a constituent, bounds for 

porous rock are usually too wide to be useful.  This suggests that, for predictive purposes, 

it would be most effective to define end–members such that they have the most similar 

properties possible. 

 

The case of bounds for composites with similar end–member properties is illustrated in 

Figure 11 for the particular case of bulk and shear moduli for zero porosity quartz–calcite 

mixtures.  Here the Reuss–Voigt and Hashin–Shtrikman bounds are so tight that any 

reasonable average of the bounds, such as a Hill (1952) average must be similar to actual 

observations.  



 42 

 

Figure 11: Bulk moduli and shear moduli as a function of composition for a zero 

porosity mixture of quartz and calcite.  Regression fits by Wilkens et al. (1984) are 

shown in brown for bulk modulus (k) and purple for shear modulus ().  The 

dashed line is the Voigt bound for bulk modulus (Kv).  The Reuss bound for bulk 

modulus (Kr), the Hashin–Shtrikman bounds for bulk (k+) and shear moduli (u+), 

and the Reuss (Ur) and Voigt (Uv) bounds for shear modulus, all coincide with the 

observed regression fits. 

 

 

 

G
P

a
 



 43 

4.1. Effect of Distribution of Porosity between End–Members on the Bounds 

 

Berryman and Milton (1991) show that for a dry rock frame, it is theoretically exact to 

avoid dealing explicitly with porosity by incorporating its effect into the end–member 

properties.  In this view of a porous mineral aggregate containing quartz and calcite, we 

have a binary mixture of porous sandstone and porous limestone.  It is relevant how the 

porosity is distributed between these end–members; as a zeroth order approximation, the 

porosity is taken to be equally distributed between the end–members to eliminate a 

degree of freedom in regression fits to data.  However, it should be made clear that how 

porosity is distributed between the end members requires further discussion (see below). 

 

Given empirical trends relating moduli to porosity for pure end–members, we can now 

use bounds defined in a porosity–implicit way to determine the properties of a mixture 

components.  Figure 12 shows that the Hashin–Shtrikman upper and lower bounds are 

virtually identical for a 5% porosity aggregate of quartz and calcite. 
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Figure 12: For a binary porosity–implicit mixture, the Hashin–Shtrikman upper 

and lower bounds are virtually identical for both bulk and shear moduli. The 

predicted shear modulus is in precise agreement with the linear regression fit (heavy 

purple line) to the data of Wilkens et al. (1984). 
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To illustrate the effects expected at higher porosities it is instructive to consider a binary 

model with quartz and limestone end–members of equal porosity. 

  

Parameters of this model consist of the fraction of limestone (Xlms), porosity of limestone 

(φlms), fraction of sandstone (Xss) that contains 56 % of quartz (Xq = 56%) and porosity 

changing: φ = 1–24%: 

Xss = Xqtz + φqtz 

As sandstone porosity increases, composition of limestone decreases from 43 to 20 

percent (Xlms = 43–20%).  Total fraction of limestone is: 

Xlms = Xcal + φlms 

Therefore the total fraction of rock is: 

Xrock = Xss + Xlms = Xqtz + φqtz + Xcal + φlms = 1 

Keeping in mind that porosity of limestone is equal to the porosity of sandstone (φlms = 

φss) and making calculations using above bounding equations, we see that the Hashin–

Shtrikman upper and lower bounds are quite tight and are linearly decreasing with 

increasing porosity.  The results are presented on Figure 13. 
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Figure13: Upper (K+) and Lower (K-) Hashin–Shtrikman bounds of 

multiminerallic rock with equal distribution of porosity between end–members. 

Porosity of sandstone is equal to porosity of limestone, amount of quartz equals to 

56%, amount of calcite changes from 43% to 20% as porosity changes from 1% to 

24%. 
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To approximate the actual conditions, it is important to take a detailed look into porosity 

distribution, and consider the case when porosity is apportioned in the most 

petrologically reasonable way, based on priori information and the best fit of the data.  To 

run calculations of Hashin–Shtrikman bounds we take the same as presented above 

fraction of end–members in the rock, but porosity now is not equally distributed.  

Porosity of sandstone varies from 1 to 24 percent (φss = 1–24%), while porosity of 

limestone is taken to be five percent out of the fraction of limestone: 

φlms = 0.05Xlms 

This means that the fraction of calcite within the limestone is: 

Xcal = 0.95Xlms 

Results of these calculations are presented in Figure 14. This figure shows that with 

increasing porosity bulk moduli decreases.  We know that the shear modulus of calcite 

(μcal = 32 GPa) is lower than the shear modulus of quartz (μqtz = 44 GPa), but due to 

uneven distribution of porosity, the shear modulus of porous limestone is becoming 

closer to the shear modulus of porous sandstone (μlms → μss).  Therefore, comparing 

Figure 14 with Figure 13, we observe that with the increase in porosity from 0 to 13 

percent Hashin–Shtrikman bounds get tighter when φss ≠ φlms (Figure 14).  We also see 

that upper and lower Hashin–Shtrikman bounds overlie at the point where porosity is 

around 12–13%, this is because at this point shear moduli of end–members are almost the 

same (μss ≈ μlms), (see Table 2).  In case of equal distribution of porosity (φss = φlms) 

Hashin–Shtrikman bounds get wider with increasing porosity (Figure 13). 
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Porosity 
(K+)-(K-) equal distribution  

of porosity (GPa) 
(K+)-(K-) unequal distribution  

of porosity (GPa) Equal – Unequal (GPa) 

0.01 0.612626975 0.591300762 0.021326214 

0.02 0.774126676 0.774069588 0.000057088 

0.03 0.926251444 0.909548337 0.016703106 

0.04 1.06921032 0.997393187 0.071817133 

0.05 1.20321214 1.037292457 0.165919683 

0.06 1.32846551 1.028977906 0.299487604 

0.07 1.445178784 0.972236655 0.472942129 

0.08 1.553560042 0.866923637 0.686636405 

0.09 1.653817058 0.71297444 0.940842618 

0.1 1.74615727 0.510418391 1.235738879 

0.11 1.830787746 0.259391696 1.571396051 

0.12 1.907915144 0.039849571 1.868065572 

0.13 1.977745664 0.386916871 1.590828793 

0.14 2.040485006 0.78127726 1.259207746 

0.15 2.096338303 1.222242375 0.874095928 

0.16 2.145510061 1.708958661 0.436551401 

0.17 2.188204083 2.240399125 -0.052195042 

0.18 2.224623378 2.815356938 -0.59073356 

0.19 2.254970063 3.432441166 -1.177471103 

0.2 2.27944524 4.090074923 -1.810629682 

0.21 2.29824886 4.78649617 -2.48824731 

0.22 2.311579549 5.519761379 -3.208181829 

0.23 2.319634416 6.2877522 -3.968117784 

0.24 2.322608806 7.088185211 -4.765576406 

Table 2: First column shows fraction of porosity. Second and third columns show 

differences between upper (KHS+) and lower (KHS-) Hashin–Shtrikman bounds for 

equal and unequal distributions of porosity respectively. Last column represents 

difference between values in second and third columns. 
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Figure 14. Upper (K+) and Lower (K-) Hashin–Shtrikman bounds of 

multiminerallic rock with unequal distribution of porosity between end–members. 

Amount of quartz is 56%. Sandstone porosity changes from 1 to 24%, while 

limestone porosity changes from 1 to 2.15% (5% out of total volume of limestone). 

Calcite changes from 43 to 20%. 
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Figures 15–19 represent the values of bulk moduli (K+ and K-) versus fraction of 

porosity.  In this case we have two changing parameters: porosity of sandstone (φss) and 

fraction of limestone (Xlms).  Porosity of limestone and fraction of quartz are constant: 

φlms = const; Xqtz = const 

The general behavior of curves is similar to one in Figure 14.  At a point where upper 

(KHS+) and lower (KHS-) Hashin–Shtrikman bounds overlie, we observe that the shear 

moduli of end–members are the same: 

μss = μlms 

Figure 15 to Figure 19 show that as limestone porosity varies, the point where two curves 

overlie changes.  This means that changes in porosity affect Hashin–Shtrikman bounds, 

i.e. with increase in porosity Hashin–Shtrikman bounds become wider. 
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Figure 15: Upper (K+) and Lower (K-) Hashin–Shtrikman bounds of 

multiminerallic rock with unequal distribution of porosity between end–members. 

Amount of quartz equals to 56%. Sandstone porosity changes from 1 to 24%, while 

limestone porosity stays constant and equals to 1%. Amount of calcite changes from 

43 to 20%. 
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Figure 16: Upper (K+) and Lower (K-) Hashin–Shtrikman bounds of 

multiminerallic rock with unequal distribution of porosity between end–members. 

Amount of quartz equals to 56%.  Sandstone porosity changes from 1 to 24%, while 

limestone porosity stays constant and equals to 3%.  Amount of calcite changes from 

43 to 20%. 
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Figure 17: Upper (K+) and Lower (K-) Hashin–Shtrikman bounds of 

multiminerallic rock with unequal distribution of porosity between end–members. 

Amount of quartz equals to 56%.  Sandstone porosity changes from 1 to 24%, while 

limestone porosity stays constant and equals to 5%.  Amount of calcite changes from 

43 to 20% 
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Figure 18: Upper (K+) and Lower (K-) Hashin–Shtrikman bounds of 

multiminerallic rock with unequal distribution of porosity between end–members. 

Amount of quartz equals to 56%.  Sandstone porosity changes from 1 to 24%, while 

limestone porosity stays constant and equals to 10%.  Amount of calcite changes 

from 43 to 20%. 
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Figure 19: Upper (K+) and Lower (K-) Hashin–Shtrikman bounds of 

multiminerallic rock with unequal distribution of porosity between end–members. 

Amount of quartz equals to 56%.  Sandstone porosity changes from 1 to 24%, while 

limestone porosity stays constant and equals to 15%.  Amount of calcite changes 

from 43 to 20%. 
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The explanation of the Hashin–Shtrikman bounds presented on the pictures above lies in 

examination of elastic moduli of each end–member of the composite.  The calculations of 

bulk moduli of each end–member are presented on Figures 20 and 21.  We see that bulk 

modulus for sandstone is decreasing dramatically with increasing porosity, while the bulk 

modulus of limestone is slightly decreasing as porosity of limestone is slightly increasing. 

Bulk modulus of cement being incorporated into pores of sandstone may have influence 

on the bulk modulus of the whole rock, but as we see on the figure 21, porous limestone 

has bulk modulus changing from 60 to 70 GPa, while porous sandstone has bulk modulus 

below 40 GPa. Therefore, it hardly explains why Hashin–Shtrikman upper and lower 

bounds for rocks with uneven distribution of porosity overlie at some point. 
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Figure 20: Bulk modulus of sandstone versus porosity of sandstone.  With 

increasing porosity bulk modulus of sandstone is decreasing very rapidly. 
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K_limestone vs phi_limestone
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Figure 21:  Bulk modulus of limestone versus porosity of limestone.  Bulk modulus 

of limestone is slightly decreasing due to little increase of limestone porosity. 
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Results for shear–modulus are presented in Figures 22 and 23. Previously, shear modulus 

for sandstone decreases fast with decreasing porosity, while the decrease of shear 

modulus for limestone is slight with slightly decreasing porosity.  The general behavior 

of these curves is similar to the behavior of bulk moduli curves.  But, as figure shows, 

shear modulus for sandstone changes from 10 to 45 GPa, while shear modulus of 

cementing material, which is limestone, changes from 25 to 30 GPa.  The fact that, shear 

modulus of both end–members is the same at some points, explains why Hashin–

Shtrikman upper and lower bounds overlie.  Consequently, at those points where Hashin–

Shtrikman bounds overlie we have almost the same shear moduli of porous sandstone and 

porous limestone.  
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Figure 22.  Shear modulus of sandstone versus porosity of sandstone. Shear 

modulus in this case is abruptly decreasing with increasing porosity. 
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Figure 23:  Shear modulus of limestone versus porosity of limestone.  Shear modulus 

decreases very slightly due to little increase of porosity. 
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5. Comparison to Observation 
 

 

Figure 24 shows that for the porosity–implicit model, the predicted and observed 

variations in shear modulus with composition are virtually the same.  This fact alone is 

very significant for shear–wave velocity prediction, and explains why the Greenberg and 

Castagna (1992) model and others have been successful.  However, the theory should 

explain all the data if correct and the regression fits of Wilkens et al. (1984) show a frame 

bulk modulus that is more linear with composition than the bounds predict (see Figure 

25).  What did go wrong? How can the observations violate what theoretically are almost 

exact bounds? The answer is that the linear regression applied by Wilkens et al., (1984) a 

priori assumes a linear relationship between velocity and composition.  The predicted 

bounds tell us this cannot be so in the case of P–wave velocity if the assumptions made 

are correct.  However, the porosity–implicit model suggests that a linear velocity versus 

composition relationship is a very good assumption for shear–wave velocity.  In other 

words, if the theory of Berryman and Milton (1991) is correct, and the porosity is 

uniformly distributed as assumed, then a linear form of velocity versus composition must 

be correct for shear waves in the quartz–calcite system, but wrong for P–waves.  The fact 

that a linear relation is correct for shear–waves may be related to the fact that quartz and 

calcite shear moduli are more similar than are the bulk moduli. 
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Figure 24. Nearly identical Hashin–Shtrikman upper and lower bounds for shear 

moduli compared to the linear regression equations of Wilkens (green line) et al. 

(1984) for porosity equal to 5%.  Hashin – Shtrikman upper and lower bounds are 

represented by blue and red lines respectively.  Points indicate Wilkens data, and 

each point has different porosity (ranging from 1.3 to 6.8 %). 

G
P

a
 



 64 

Using the theoretical bounds as a guide, it can be seen that the P–wave velocity should be 

related to the 3/2 power of calcite content rather than a simple linear fit (Figure 25).  In 

fact, the 3/2 power equation yields almost identical end–member properties and porosity 

dependence, fits the theory, and also better fits the data with the same variables as the 

linear fit (see Table 3). 
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Figure 25: The bulk modulus from linear and non–linear velocity regression fit to 

the data of the Wilkens et al. (1984). 
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Table 3: Statistical parameters for linear and non–linear regression fit to the data of 

Wilkens et al, (1984) for measurements at 0.01 kbar. Both regression fits have the 

same number of variables, yield similar end–member properties and have similar 

porosity dependence. However, the Hashin–Shtrikman guided non–linear regression 

fits the data better in a statistically significant manner. 
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Xcal Porosity Density 
Dry 

Vp_Wilkens K_Wilkens 

0.496 0.068 2.502 5.5 45.6615 

0.4 0.06 2.518 5.34 36.77555787 

0.56 0.036 2.592 5.52 45.3371904 

0.4 0.024 2.54 5.76 48.719232 

0.81 0.013 2.672 6.35 70.3422704 

0.64 0.039 2.591 5.85 52.18058083 

0.27 0.04 2.529 5.68 41.4563796 

0.131 0.047 2.533 5.75 43.5486025 

0.26 0.036 2.571 5.78 46.9615432 

0.35 0.031 2.591 5.73 49.02785203 

0.08 0.039 2.552 5.69 39.01387013 

0.061 0.041 2.546 5.65 38.97408313 

0.13 0.047 2.534 5.16 32.87172373 

0.921 0.056 2.563 5.76 54.48288707 

0.896 0.044 2.593 6.08 64.53008947 

0.99 0.053 2.576 5.75 53.6356688 

0.8 0.034 2.613 5.6 49.3208976 

0.39 0.051 2.542 5.31 34.0905078 

0.604 0.021 2.635 6.14 61.770724 

0.628 0.026 2.625 5.98 58.92145 

0.41 0.02 2.626 5.91 51.72055807 

0.31 0.031 2.59 5.73 43.933911 

 

 

Table 4: Wilkens et al, (1984) data plotted on Figure 25 as blue dots. 
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Xcal Porosity Density Vp_calc_linear K_calc_linear 

0.496 0.068 2.502 5.362808 41.93279353 

0.4 0.06 2.518 5.4242 39.05773619 

0.56 0.036 2.592 5.79788 53.48906279 

0.4 0.024 2.54 5.8832 52.36271529 

0.81 0.013 2.672 6.19688 65.20888207 

0.64 0.039 2.591 5.79347 50.47517075 

0.27 0.04 2.529 5.62421 39.86143572 

0.131 0.047 2.533 5.476163 35.76180893 

0.26 0.036 2.571 5.67098 43.75194321 

0.35 0.031 2.591 5.7728 50.30345274 

0.08 0.039 2.552 5.55659 35.18483001 

0.061 0.041 2.546 5.523053 35.3628735 

0.13 0.047 2.534 5.47574 41.38122147 

0.921 0.056 2.563 5.695583 52.59156148 

0.896 0.044 2.593 5.838008 57.05171517 

0.99 0.053 2.576 5.76302 54.02180996 

0.8 0.034 2.613 5.9249 59.10511935 

0.39 0.051 2.542 5.53472 40.28542657 

0.604 0.021 2.635 6.007742 57.53723798 

0.628 0.026 2.625 5.954144 58.11145578 

0.41 0.02 2.626 5.93843 52.60512844 

0.31 0.031 2.59 5.75588 44.70380035 

 

Table 5: Data plotted on Figure 25 as red dots; these date show linear regression fit 

to Wilkens et al (1984) data. 
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Xcal Porosity Density Vp_calc_3/2 K_calc_3/2 

0.496 0.068 2.502 5.338284764 41.27620513 

0.4 0.06 2.518 5.402399547 38.46342581 

0.56 0.036 2.592 5.785428498 53.11521969 

0.4 0.024 2.54 5.872559547 52.04499531 

0.81 0.013 2.672 6.215671 65.8321107 

0.64 0.039 2.591 5.785188 50.22670824 

0.27 0.04 2.529 5.616384072 39.63896445 

0.131 0.047 2.533 5.486046482 36.0362463 

0.26 0.036 2.571 5.665388719 43.58898081 

0.35 0.031 2.591 5.76189931 49.97767029 

0.08 0.039 2.552 5.580140888 35.85416831 

0.061 0.041 2.546 5.550852607 36.14666018 

0.13 0.047 2.534 5.485819438 41.6611939 

0.921 0.056 2.563 5.718982427 53.27612415 

0.896 0.044 2.593 5.860726134 57.74086561 

0.99 0.053 2.576 5.800550739 55.13976654 

0.8 0.034 2.613 5.935771994 59.4420635 

0.39 0.051 2.542 5.515989512 39.75927024 

0.604 0.021 2.635 6.002424181 57.36894608 

0.628 0.026 2.625 5.948962772 57.9495649 

0.41 0.02 2.626 5.928799271 52.30500273 

0.31 0.031 2.59 5.747459691 44.45292862 

 

Table 6: Data presented on Figure 25 as green dots; these date show non–linear 

regression fit to Wilkens et al (1984) data. 
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6. Conclusions and Discussion 

 

The Hashin–Shtrikman bounds are an important and useful constraint for frame moduli 

predictions.  In porous rocks, the porosity–implicit approach yields bounds that are 

sufficiently tight for predictive purposes and mixing models in the quartz–calcite system 

are linear for shear–wave velocity but non–linear for compressional–wave velocity.  The 

porosity implicit approach can guide non–linear regression fits to the data while limiting 

the number of variables.  The need for empirical trends to consider the compositional 

dependence of velocity on porosity can be accommodated with the porosity implicit 

approach.  This was not an issue for the highly lithified, low–porosity rocks, studied by 

Wilkens et al (1984) but is likely to become an issue for assemblages including a wider 

range of porosities, softer rock frames, clays, and more variable aspect ratio. 

 

Porosity distribution is the key assumption for elastic moduli prediction.  In this work 

results of calculation made on rock assuming equal distribution of porosity were 

compared with those made on rock of the same mineral composition but possessing 

unequal distribution of porosity.  In case of equal distribution, as porosity changes φ = 1–

13%, Hashin–Shtrikman upper bound KHS+ decreases from around 47.2 GPa to around 

36.6 GPa, and Hashin–Shtrikman lower bound KHS- decreases from about 46.7 GPa to 

about 34.6 GPa.  Unequal distribution of porosity shows that with increase of porosity φ 

= 1–13%, KHS+ decreases from 46.6 GPa to 43.6 GPa, while KHS- decreases from 45.6 

GPa to around 43.5 GPa.  This shows that if actually we have uneven distribution of 
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porosity, but make calculations assuming equal distribution we may have error from 

around 1.2% to around 19.1% for KHS+, and from around 2.3% to around 25.7% for KHS-. 

 

Results also show that if we have unequal distribution of porosity Hashin–Shtrikman 

bounds are tighter than in case of equal distribution.  As shown in Table 2, with increase 

in porosity from 1 to 13%, Hashin–Shtrikman bounds are tighter from about 0.01% to 

around 97.9%. At φ = 7%, KHS bounds calculated assuming uneven distribution of 

porosity are 32.7% tighter than KHS bounds calculated assuming even distribution of 

porosity.   For porosities φ>13%, KHS+ and KHS- become very wide. 

 

The results presented here are theoretically exact for dry rock frames.  In the case of 

saturated rocks, these results are exact only in the limit when permeability approaches 

zero.  The significance of fluid mobility needs to be investigated before these results can 

be considered applicable for saturated rocks. 
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