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Abstract

Theoretically, given gross reservoir thickness and seisnpedance of a binary
sequence of pay and non-pay layers comprising the resetuvsipossible to invert for
net pay thickness if the properties of the layers amvkn To determine the acoustic
impedance, a post-stack constrained non-linear inversian dbmbines the random
sampling technique is used.

It is found that first, an acoustic impedance of onethef layers has to be
constrained to achieve unique solution. Second, Montle Gampling technique allows
convergence to the global minimum rather than locadimum in the optimization.
Third, the greater the number of layers involved initkiersion, the closer estimated net-
to-gross ratio is to the actual net-to-gross ratioalfy, the inversion technique gives
good estimation of the net-to-gross ratio when theeegsod correlation between a net-

to-gross ratio indicator and acoustic impedance, aastfaund in South Timbalier field.
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1. Introduction

Implementinga priori information into an inversion algorithm can reduce the
number of solutions and even cause the solution to be u(ideleke, 1984)A priori
information can be seen as additional data regardingemparameters, which are
acquired independently from the actual data. The actualimdtas research include a
window of a migrated seismic time section representiggnormal incident response,
whereasa priori information in the research includes acoustic impedanieerdimed by
well logging interpretation. In addition, parameters irddr by spectral inversion are
included into the algorithm as constraints. They arearqiori, as they are derived from
the data itself. However, they can be regarded as sudhebjnversion method, as a
means of 1) biasing the inversion in directions found to beadids for interpretation
purposes, and 2) reducing the size of the initial-model space.

In the research, these two pieces of information ackided into a non-linear
inversion algorithm to produce acoustic impedance in time #m, combined with
additional petrophysical information for a given layeenet-to-gross ratio of a reservoir.

Synthetic wedge models are used to examine the effeesgeof such a non-
linear inversion algorithm. In the examples, the syitheata with various signal-to-
noise ratios are inverted for model parameters, usealdolate the net-to-gross ratio of a
layer. In a noise-free environment, the algorithm givesdeterministic solution — only
one solution. However, in the presence of noise, lier $ame signal-to-noise ratio,
different random noise is used and thus the algorithmsdive statistical solution in a

form of histogram, standard deviation, and the mean valpeedicted net-to-gross ratio.
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Because the wedge model has assumed only three laybesnmotel and data to
be inverted have been created from the actual paranaienizof the inversion
algorithm, another synthetic case is investigated. Haseinvestigated the effects of the
number of layers on the inversion result.

Finally, the same multi-layer algorithm is applied orreal dataset — South
Timbalier field data.

There are not many examples in the literature thatreaddthe problem of
determining the net-to-gross ratio of the layer with Kh@ss below the seismic
resolution. Most of the techniques used tried to estinetetoss thickness of the layer
(Widess, 1973; Partyka et al., 1999; Marfurt and Kirlin, 2001; &gt et al., 2003). The
only attempt for solving the problem was using the speatradrsion (Partyka et al.,
2006). This technique is actually also an inversion technique; howgvis in the

frequency domain.



2. The quality of a hydrocarbon reservoir — the net-to-grossatio

A net-to-gross ratio could be defined in different ways. 1D case,
petrophysicists assume that the net and gross thicknasselkependant on the cut-off
porosity. Thus, the total thickness of the reservdtin worosity greater then the cut-off is
considered to be the net thickness, whereas the trioksess is total thickness of the
reservoir, including all values of porosity. Howevercdogse a sand-shale hydrocarbon
reservoir is assumed here, usually net thicknessnisidered to be the thickness of sand,
whereas gross thickness is the total thickness of gervar, including the shale and

sand thickness (Figure 1).

shale

Gross

shale

sanc

shale

san I Net,

[ Net Net:§ Net

san( I Nets

shale

Figure 1: Net vs. gross thickness in the sand-shale sequence (D case

To examine the dependency of the quality of the reserenithe acoustic
impedance, there are two theories to be consideredthesyy and effective medium
theory. These two theories correspond to the two Bedcaounds: Voigt and Reuss,

respectively.



2.1 Ray and effective medium theory

The ray theory is consistent with the observationthéf wavelength) of the
wavelet dominant frequency is much less then the sdptd {he layering4A<<d). Inthe
ray theory, it is assumed that all constituents egped the same stress, representing the
isostress or Voigt bound (Voigt, 1910). Furthermore, thecg¥e elastic modulus\) of
the overall medium (in 1D case, stack of the layehspugh which the wave propagates,
is the arithmetic average of its constituent’s modmli) ( Therefore, using the volume

fractions {;):

M=> fiM, (1)

On the other hand, the effective medium theory is istar® with the observations
if the wavelength/) of the wavelet dominant frequency is much bigger thes¢hée )
of layers £>>d). In the effective medium theory, it is assumedt thih constituents
experience the same strain, representing the isostraReuss bound (Reuss, 1929).
Moreover, the effective elastic modulus of the overadium is the harmonic average of

its constituent’s moduli, often called Backus averageckBs, 1962). Thus:

-1
M = i
=) @
However, the effective density of the medium i the arithmetic average of its

constituents’ densitie®j in both theories:

pP= Z f.o (3)



Using the previous equations, the ray theory can be esmezs by the time-

average or so-called Wyllie’s equation (Wyllie et al., 1956):

1 f
=) ', = ) (4)
v oLy oA

whereas the effective medium theory can be reptedeby the following equation

(Marion et al., 1994) :

1 f.
= ! 5
VZ pz pi\/iz ( )

where V is the effective seismic-wave velocity of the alsd medium,V; are the
seismic-wave velocities of the medium constituesitss the seismic travel time through
the medium, andt; are the seismic travel time through the mediunsttuents.

These two simplest bounds or theories explain Hmvredium behaves in the
extreme cases — very low and very high frequeneypawed to scale of the anisotropy.
Defining these cases, all other media behaviomis @mbination of them. Therefore,
applying these theories and determining the bowgndet-to-gross ratios of the reservoir,
through which the seismic wave propagates, giverdhge of all possible values of the

net-to-gross of the reservoir.

2.2 Travel-time net-to-gross ratio — ray theory

Again, in 1D case (Figure 1), the net-to-grossorafithe shale-sand reservoir is

the ratio of the sand thickness4d and total thicknessj.

First, using the ray theory or starting from eqoiasi 3 and 4:



,0= fshlosh + fssloss and (6)

fsh + fss (7)

Vsh V_ss

1
\%
whereshandssare subscripts representing the shale and sardfitc@mt of the medium
(reservoir). Because the normal incident wave msm@red, that is 1D case, the volume
fractionsf; represents the fractions of the correspondingiieiss: for shalef, =h_ /h
and for sand,f_=h_/h. Thus, the density equation can be rewritten éftilowing
form:
Ph = pgh + o ®
Becausen =\/At WhereV is seismic-wave velocity, the equation becomes:
VAL = oy VAL, + p VAL 9)

Furthermore, as acoustic impedahcg defined ad/p :

IAL = 1Aty + 1 At (10)
Now substituting At,, using the time-average equatiaty, =At-At, in the
previous equation:
1AL =1 (At -At) + 1 At (11)
Finally:
% =& = Net/ Gross (12)

wherel, lss andlg,are P-wave acoustic impedances of the reservaoidssane, and

shale, respectively.



Therefore, knowing acoustic impedancé a reservoir, together with acoustic

impedances of clean sand and clean shale, thel-tnaee net-to-gross ratio can be

estimated.

2.3 Travel-time net-to-gross ratio — effective medium

Now, the effective theory for shale-sand mediunegj\equation 3 and 5:

10= fshlosh + fsslossand (13)
1 fs fss
or = (p \;2+,0V2j (14)
sh¥ sh ss' ss

For 1D case, both equations can be rewritten irickewving form:

h _ h + h, and (15)

pV 2 p shvsi p ssvszs

m = pshhsh + psshss (16)

and ash =VAt, the equations becomes:

At _ Dty |, Dty g 17)
pV pshvsh pss\/ ss

,0\/ At = p sthhAtsh + p ssvssAtss (18)

Furthermore, introducing the acoustic impedadnasvp:

At _ Aty |, Al ang (19)
l lsh lss
lAt = IshAtsh + lssAtss (20)

Now substitutingAt,, of the first equation:



Atg, =1 Sh(ﬁ - AtSS] (21)

into the second, the following equation is derived:

At
I

SS

12 12
(I —l—Sh]At = ( | o —l—Sh]AtSS (23)

+1 ssAtss or (22)

At = |§h$-|§h

Finally:
I 2
| ——sh 2 _ 2
Aty _ - ISS(|2 |25h) = Net/Gross (24)
T A (Y

SS |
SS

Using the effective medium theory, the same commuss derived: knowing
acoustic impedancef a reservoir together with acoustic impedancesledn sand and

clean shale, the travel-time net-to-gross ratiolmestimated.

2.4 Calculating reservoir travel-time net-to-gross ratio

One can easily prove that knowing the average dacouspedance of the
reservoir, Imean and clean sand and clean shale acoustic impesianRgaand gy is
sufficient to determine the travel-time net-to-groatio of the reservoir; that is, the net-
to-gross ratio determined from each infinitesimayer dt (Figure 2) with acoustic
impedancel is directly related to the mean of the acoustipadancelmean This
argument stands for both Voigt and Reuss boundsrdwee that for the Voigt bound,

using the equation 12:



o]

J~|I -l at

t, ss_lsh

t, -t

Net/Gross = (25)

wheret; is one-way travel time to the bottom of the res@randt; is one-way travel

time to the top of the reservoir (Figure 2); thereft, — t; is the travel-time gross

thickness. In a discrete form:

ORIV (Z'i]_”'sh
|

Net/Grosg: ! S:’];:Sh =1 55_|5h= lss_lsh —
n n
(Zt)-m 5
' |
= lss _ lSh —_n " - lmean_ lsh (26)
n lss_lsh los— 1

Therefore, to calculate travel-time net-to-grosdyotihe mean value of the

acoustic impedance of the reservoir is sufficiédbw the same can be applied for the

Reuss bound; thus, starting from equation 24:

Net/Gross = (27)

in the discrete form:

Net/Gross = -




s _
(Iszs_lszh)ZIi Zli o Zh |SS(|2 2)

_ ss i l 52h — mean ! sh
_ - = 28
n (l st_ |52h) n z|| lmean(l st_ lszh) ( )
o
n

Again, the same conclusion can be made: the knowinghean value of the
acoustic impedance of the reservoir suffices teermeine the travel-time net-to-gross

ratio of the reservorr.

Ish Acoustic impedanc lss‘ lsh Acoustic impedant lss‘

» »

t1
to

dt ;

Depth, Depth,

Time V¥ Time VY

Figure 2: Real and average acoustic impedances-s#fime net-to-gross ratio.

In this research, acoustic impedance of the reges/going to be estimated using
non-linear inversion, whereas the acoustic impeelsid the clean sandstone and shale
are going to be estimated from the well logging sneement. The output of the inversion

is not the average thickness of the reservoir beatstarting acoustic impedance of the
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reservoirly and gradient of the acoustic impedance withinréservoirg, so that the
average can be easily calculated:

+g(1+2+...+(n—1))
n

(29)

mean I0

wheren is the travel-time thickness of the reservoir.

2.5 True net-to-gross ratio

Now, to calculate net-to-gross ratio in depth domdhat is, true net-to-gross
ratio, the ratio between the velocity of clean s&gdand the velocity of reservoY is
needed:

For ray theory:

Net/Gross=Tes = BlaVes - 17 1an Voo - oy GrossE (30)
h AtV l ss l sh \% \

For effective medium theory:

2 _ g2
Net/ Gross:E - AlaVe ISS(L |25h) Ves _ e/ Gross,\E (31)
h atv o 1{12-12) v Vv

SS

Hence, if theratio of clean sand velocity and velocity of resaris close to one,
the travel-time net-to-gross ratio could be vergumate in the estimation of the economic

value of the reservorr.
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3. Theory of seismic inversion

To study any physical system, three elements arbetancluded (Tarantola,
2005):

1) Forward modeling — which uses the discovered phydaws on given
values of model parameters to predict the obseswdditia (Figure 3).

2)  Parameterization of the system — which includesodiery of the minimal
sets of the model parameters, whose values comple@racterize the
system.

3) Inverse modeling — which uses the measurementseobbservable data to

estimate the actual values of the model param{tegare 3).

Forward Modeling

L

I,
T A
model parameters seismic response

Inverse Modeling

7\
App- —
ApSpn- —
ApIp-

_L

seismic data estimated model
parameters

Figure 3: Forward vs. inverse modeling (Treitelagt 1993).
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Forward modeling and inverse modeling (or inverki@me two opposite
processes (Russell, 1988): forward modeling iscequture for creating model data from
the known model parameters; conversely, inverseetimgdor inversion is a procedure
for extracting model parameters from the acquiraih dConsequently, two spaces can be
defined: model space and data space. Thus, modminpters represent a vector in the
model space, usually denoted iimy whereas seismic data represent a vector in tte da

space, usually denoted Oy
m=[m m, .. m_, m,[
d:[dl d2 dN—1 dN]T

where M and N are dimensions of the model and sladiaes, respectively.
3.1 Forward modeling

To develop a forward modeling algorithm in a nofis® environment, a seismic
data in time domaird; can be regarded as convolution of a seismic waweleand

reflectivity functionry:

d =D wr_, (32)

For normal incident waves, pressure reflection foaehts depend only on

acoustic impedances of media= gV :

il AV eV,

J
l j+l + l j loj+1Vj+1 +10jVj

(33)

wherep is density, and/ is P-wave velocity of a layer.
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Using the previous equations, one can easily dpvalo algorithm for seismic
forward modeling: knowing the model parameters, &@avacoustic impedances with
time, and the source signature and combining thatemns 13 and 14, a synthetic seismic
trace can be produced.

To use this forward model, there are many assumgtibirst, the effects of 1)
geometrical spreading, 2) transmission, and 3)malltiples have been removed and
properly compensated in the given seismic dataor®kdhe seismic trace is calibrated in
such a way that the amplitude of the seismic dafaresents the absolute values

corresponding to the reflection coefficients. Thifte data are noise-free.

3.2 Parameterization

A very important part to be included into the irsien and forward modeling
concepts is how the model parameters are definednpletely characterize the system
— in this case, the model is defined by the P-was@ustic impedance profile and the
source signature. The acoustic impedance profitepsesented using so called discrete
interval parameterization (Cooke and Schnieder,3198his type of parameterization
involves three parameters for each loflayers in the profile: (1) starting acoustic
impedancsd;, (2) two-way travel-time thickness of layext, and (3) acoustic impedance

gradientg; (Figure 4), whereé=1, 2, 3 ... L(Figure 4).

14



v—

At ithlayer\\ g

tV

Figure 4: Discrete interval parameterization of astic impedance with time.

The source signature is considered to be RickereleaFigure 5). Ricker
wavelet is a zero-phase wavelet representing andeserivative of the Gaussian function
or the third derivative of the normal probabilitgresity function (Sheriff, 2002) To define
Ricker wavelet, only one parameter is needed -ddmainant frequencif. Thus, in time

domain, the equation for the Ricker wavelet isftliewing:

() = (L- 272 £ 212 e e (34)

T | F(i)

<_
?

(a) (&)
Figure 5: Ricker wavelet - a) time domain andrbfjiency domain (Sheriff, 2002).
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The dominant frequency can be related to mean &y ean

2
Finean= (Fj fu (35)

Now when the parameterization has been define@nargion of the model space
and thus model vector can be determined. If thebauraf layers id, by constraining the
travel-time thickness of one layer, twolotravel-time thicknesses are dependent on the
other L — 2travel-time thicknesses; thus, because a sourcaitsige is defined by one
parameter (dominant frequency), the number 35L-1 parameters is needed to
completely characterized the physical system:

m=[l,1,---1,0,8, -9 ALAL, At , f, |

The only problem left regarding parameterizatiothes number of layerd { used
in the inversion. To estimate number of layerst thaactually to estimate the number of
degrees of freedom, the applied algorithm usesamngécg technique. The different
number of layers is investigated; thus, with inereg@ the number of layers, when the
average of the acoustic impedance of the layentefeést becomes stable, it suggests that
the degrees of freedom are good enough for theogarpf the estimating net-to-gross
ratio. The detailed analysis is given in the Sec#o Synthetic example — Multi-layer

case.
3.3 Non-linear inversion

Now, when the forward model and parameterizatian defined, the inversion

procedure should be determined. Generally, thezetvam types of the inversion: linear

16



and non-linear. As their names imply, linear anadh-hioear inversions solve for the

model parameters that linearly and non-linearlgetfthe data, respectively.

E(m)

mGS‘

Y

model parameter m

Figure 6: One minimum in the objective function(mitof a linear model parameter —m
(Menke, 1984).

Both linear and non-linear inversion algorithms arsually solved by the
optimization of an objective function. This funatiass most commonly the sum of the
squares errors of observed and predicted dataugith@ can be any kind of a norm
function. The least squares technique is most podcause its solution represents the
maximum likelihood solution, if the data errorsld@¥ Normal (Gaussian) distribution
(Menke, 1984).

Using any optimization technique, the unique sohlutf the inversion should be
the global minimum of the function. Furthermoree tbbjective function of a linear
problem shows only one minimum (Figure 6), wherégsobjective function of a non-

linear problem can have one global as well as logaimum (Figure 7). This difference

17



in the complexity of the objective functions foragsophysicists to treat these problems
separately.

As it can be seen from the forward convolution miode(Equations 32 and 33),
the acoustic impedances and wavelet parameterselated non-linearly, that is, they

non-linearly affect data. Therefore, the non-lineaersion must be used to solve for the

parameters.
4 (a)
“\1
\ o
T \
—ae >
est
m
model parameter m

Figure 7: The objective function of a non-lineardebparameter
could have one global minimum and local minima rikée 1984).

There are many different approaches to solve nwatiinverse problems. One of
the non-linear inversion techniques is an iteratm®cedure using Taylor series
expansion and forward model algorithm to extraettiodel parameters. This technique
is often called Generalize Linear Inversion. It €ists of representing any seismic data
d(m) for which parameters should be solved for in terms of a synthetic sasimace

d(m) for which model parameters, called initial model parameters, are known:

ey 0d(m) o 9%d(m') (m-m')?
d(m)—d(m)+—aml (m-m")+ pyee > +...

(36)
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data /

the tangent with a slope

od(m')

model paremeter

/ am
d(m’) o3 Ag 2 ddam)
Ad N ~ N N 8m'
d(m) e linear
~
d( ) s‘ \
min s
' Am * . true
m' mtrue mIin >

Figure 8: Taylor series — linear vs. true model parameters.

Assuming that any function, non-linear in this gag®ws linear character in the

neighborhood ofl(m) and puttingd(m’) on a left-hand side, the previous equation can be

simplified and easily depicted graphically (Fig&je

ad(

d(m) -d(m) ==~

ITI]I) (min - ml)

(37)

This equation can be solved foni,-m’) and shown in a matrix form:

s 3
|
S-S

L

ody(m)  ad,(m,)
om  om
od,(m)
omy
9dy.o(My)
om,
9dy(my ;)  ady(my)
om, om,

-1

dl(m) _dl(m')

d,(m) —d,(m
z(m): o() (38)

dy (m) —.dN(m')

whereM is a number of model parameters &hig a number of data. Simplified:

Am=J*Ad

19
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whereJy, is anMxN matrix, known as a sensitivity matrix or Jacobian.

To avoid ill-posed solution of the estimated mogdatameters, a geophysicist

must consider the relationship between a numbedadd (N), a number of model

parametersN]), and a number of linearly independent piecesfafrmation in a kernel

matrix or Jacobian R) (Richardson and Zandt, 2005). Therefore, there fawur

possibilities - classes:

1)

2)

3)

4)

Class I: P=M=N - often called evendetermined problem. This type o
problem has one unique solution and predicted mexiedtly fit the data.
Class Il: P=M<N - often called overdetermined problem, which isstiyo
present in geophysics practice. This type of pnobl&s only one solution
and the predicted model does not exactly fit tha.da

Class lll: P=N<M - often called underdetermined problem, whichls® a
used in geophysics practice. This type of probleveggan infinite number
of model parameters solutions, which exactly f& tata. Usually, to form a
unique solution, another criterion is needed. B@ngle, the solution must
have a minimum length.

Class IV:P<M<N, P<N<M or P<M=N. Both model and data space have
higher dimension then the number of linearly indefgt pieces of
information, making the problem ill — posed. Namgueness exists in both

directions — data space and model space.

In this research procedure, the number of data(id)model parameters (M), and

a rank of Jacobian (P) makes class Il — overdetethproblem, which is accomplished

by the following:

20



1) choosing the number of data to be greater then hpadameters, and
2) constraining one model parameter — starting acouspedance of one of the
layers
Actually, two model parameters are constrainede.hétowever, only one is
important in terms of the solving the non-uniquenesoblem, which is going to be
explained in Section 3.4 — Non-linear inversiornuding constraints.
Furthermore, in the class Il problem, minimizing tbjective function 4Ad(m)-

JAmP, the least-squares solution, often called a Gausgdtesolution, is derived:
am=(J,J,)" JpAd (40)
Finally, model parameters are estimated usingriti@limodel parameters’ and
the solution of the previous least-squares teclemau
m,, = Mm+Am (41)
The model parametersy, (Figure 8) would represent the estimated model

parameters only if 1) the model parameters lineafigcted in the neighborhoat{m)
and d(m") and/or 2) a least-squares errﬁ(d(m)—d(min ))2 had a satisfactory small

value. If these two previous conditions are nois8atl, iteratively the error can be
reduced, where the estimated parametgrdecome new initial model parameters
Thus, a non-linear inversion usually starts witfirdeg the initial model, and the
inversion algorithm solution iteratively convergwsthe neighboring minimum or even
maximum, so that the solution of this type of nmedr inversion algorithm could be not
only the desired global minimum but also a locahimum or even a maximum (Figure

7). Consequently, the mathematical solution of dp&mization could be any of these

21



minima and maxima. One of the ways to find a glolm&imum instead of a local
minimum or maximum is to search model space by aangampling — often called
Monte Carlo sampling. In addition, using the caoasitis, the number of dimensions in the

searching model space is reduced.

3.4 Non-linear inversion including constraints

The previous analysis represents an unconstragaest $quares or Gauss-Newton
solution of the inverse problem, and it could bedug no other information regarding
model parameters is available. If additional piecdsinformation regarding some
parameters are known, for example, their relatiomstheir values, they can be
implemented and thus can improve the least-squmair@mization.

The following matrix relation can represent theayahform of equality relations:

Fm=k (42)
whereF is aKxM matrix to be formed according to the addition&bimation ,mis aM-
dimensional vector of model parameters, &nd aK-dimensional vector to be formed
according to the additional information as weM {s the number of model parameters
andK is the number of additional relations, that i® tlumber of constraints.)

Thus, for example, if travel-time thickness of tweds determined by other

method are denoted lyandt, and because the initial travel-time thicknessliese two

beds are the same, denotedtbgndt,, the corresponding perturbations should be zero:

At, =0 andAt, = 0 (43)

22



or in the matrix form:

At
At,
ao|t 000 0] Ay | fo] [k
0010 - 0]at]| |0 |k (44)
A,

One of the ways to constrain the equality relatiegarding model parameters is
to use Lagrange multipliers. Lagrange multipliei4s a scaling factor between two
vectors — the gradient of objective function and ginadient of an equation that defines

additional information to be incorporated into thgimization process (Figure 9).

FAm-k

Lagrange multiplier - A:

grad[(Ad — JAm)*] = Agrad(FAm — k)

Figure 9: Graphical explanation of Lagrange multiplier (Jensen, 2004).

To derive the physical meaning of the Lagrange igligt, first, it is clear that the
obtained minimum (or maximum) of the objective fliow is a function of the values
used to constrained the given parameter, thabésyalue ok; thus, such a function can
be defined as follows (Karabulut H., 2006):

R(k)=E.__(mKk) (45)

min
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where the functiorR(k) is the value of the obtain minimum (or maximum) tbé
objective function, satisfying the given constraint
Now, the derivative or gradient of the previousdiion with the respect of the

vectork is going to be the following:

OR(k) _ 0E._. (mk) dm dm
d R(k) = = ——mn —=grad_(E_._(mKk))—
gra k ( ) ak am dk gra m( mln(m )) dk (46)
From Figure 9:
gradm E(m,k) =/ gradn (Fm — k) (47)

Therefore:

dm (Fm-=K) dm ok Ydm
rad, R(k) = A grad_(Fm-k)—=A —=A0F—-———|— (48
grad, R = 1 (grad, (Fm-k) & molg o tﬁ amjdk()

Finally, asF is not function ok, then:

ok dm
dRK =-A——=-) (49)
grad, R(k) am dk

Therefore, the multiplier is the derivative of tlebtained minimum (or
maximum) of the objective function with the resptecthe constraint value. Again:

_OR(K) __0E,,,(mk)
ok ok

A=

(50)

There are few interpretations to be made aboupréous simple relation:

1) If 1 is close to zero, the change in constraint vak)eh&s not affected the
obtained minimum of the objective functioB)(

2) If 4 is constant with changink it suggests that the parameter involved in the

constraint equation behaves asaamihilator, making the solution non-unique; that is,
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the objective function is insensitive to its changkerefore, such a parameter should be
constrained by priori information in order to solution be unique.

2) On the other hand, ifis not constant, the changekias affected the value of
the objective-function minimum. The sensitivenesthe objective function on a change
in thek value of the constraint equality equation suggessif there is a uniqulevalue
that is close to zero, then the constrained pammugies not have to be defined dby
priori information and the solution is unique. In otherré& the solution of the
constrained inversion will correspond to the unt@msed minimum of the objective
function. In addition, in the case where the bigdper’. becomes, the higher the force of
the constraint.

In conclusion, Lagrange multiplier is a kind of icator if the parameter should
be constrained or not: if it has constant valugwtanging the constrained value of the
parameter, the parameter must be constrained ®urd@gue solution of the inversion, or
if it has a minimum (preferably close to zero), e¥hcorresponds to unique constrained
value of the parameter, then the parameter doethawa to be constrained to have a
unique solution. This usage of Lagrange multipers investigated in the chapter 5 —
Wedge models. The application of such a Lagrangdtipter interpretation is
investigated only on the wedge synthetic models.

Now, how to implement the constraints with Lagrangaltipliers technique?
Using the relation involving Lagrange multiplierBiqure 9) together with the least-

squares optimization, the following solution isided (Menke, 1984):

{Am} {J;Jm FT]TJ;Ad} (51)
y F o k
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In addition, to ensure the convergence of the &iger solution into the
neighboring minimum, the Gauss-Newton solution ¢e&n modified into Marquardt-
Levenberg solution, which implements the followawuality equation into the solution:

LAmM'Am=0 (52)

Lagrange multiplierp is often called damping factor. It prevents unloach
oscillations in the solution, that is, smooth thedel parameter change vecttn (Treitel
et al.,, 1993). Using the equation 49, Marquardtdrderg solution of the least-squares

optimization becomes:
Am=(J1J +A)"J Ad (53)
wherel is anMxM identity matrix
Finally, Marquardt-Levenberg least-squares minitidza implementing
additional information in the fornkFAm=Kk is the following:

am) [a73. +@ FT[37ad
SHEER S e

In addition to this algorithm, if again theis the number of layers, the additional
information on two oBL model parameters are constrained by the previcagiained
technique: the starting acoustic impedance of ayerl—l, and the two-way travel-time
thickness of the layer of interest 4. Both constraints are implemented using the
equality equations in the matrix form explainedvasly —-FAm=k. As their values
are considered to be known and determined by atiethod, the perturbation model

values should stay zero. Thus, as:

T

m=[|1|z"'|y"'|Lglgz"'gLAtlAtz"'Atx"'AtL—z fM]
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Am,=0andAmp+ = 0 (55)

therefore:
Fam ]
Am,
FAm:{O ol 0 0 Am, :ﬂ:{ kY} (56)
0 - 0 - 1 . 0] Am, 0 Ky ik
_Am3L—1_

To improve the Newton-Gauss solution, the dampiagtdr f# should be
implemented into the optimization. If the dampilagtbr is zero, it is clear from equation
50 that Marquardt-Levenberg solution becomes NeM@anss solution. However ff is
infinity, the Marquardt-Levenberg solution becomss called the steepest descent
method (Madsen et al., 2004). Therefore, the Madjuzevenberg method is sometimes
called hybrid method.

Because the steepest descent method gives the estiteation of optimization
solution, if the initial model is far from the mmum, and as the Gauss-Newton solution
gives much faster convergence if the initial modetlose to the minimum, the factor

should be adopted accordingly (Marquardt, 1963).

3.5 Non-linear inversion using random sampling

Monte Carlo methods are used to find mathematichitisns of the problems
that cannot be easily found by the analytical oheot numerical methods. The
implementation of Monte Carlo method is especidigired when the space dimensions

of the problem increases. The Monte Carlo methodalving the seismic inversion
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problems was previously introduced by Keilis-Borahd Yanovskaya (1967) and Press
(1968, 1971).

Here, the Monte Carlo method helps in finding mogelrameters that
corresponds to the global rather then local minimafrthe objective function — in this
case, a sum of the least-squares between two tlacether words, if the initial model of
the inversion algorithm is uncertain and unpredhigtdout the probability density function
of the model parameters could be estimated orbtglassumed, the global minimum of
the inversion algorithm could be found by Monte I€aandom sampling.

Before explaining the Monte Carlo random samplieghhique, probability
density and cumulative distribution functions mbst defined. Any random variabie
has a probability density functidiix) so thatf(x)dx represents the probability that the

random variable has a value betweerandx+dx. Consequently:
[T (9dx=1, and f (x)dx=0 (57)

If the probability density function i$(x) and the corresponding cumulative

density function ig-(x), then:
F()=[ f(dx (58)

Now, to sample model space from a given probakiéwgsity function, there are
a couple of different methods to be used. Here,irtkierse transform method is used
(Von Neumann, 1947). It is sometimes called “Goldenle for Sampling”. To
implement this technique of the random samplinggdlsteps are needed:

1) Sample a numbef from a random number generator creating the

uniformly independent values on [0,1] interval.

28



2) Equates with the cumulative distribution functiofi(x) = ¢

3) Invert the cumulative distribution function andwforx: x = F*(&).

Thex value determined in such a way represents a sashfhe random variable
being consistent with its probability density functf(x). This inversion procedure is not
always feasible. However in the case where theoumifprobability density function is

used, it is possible.

f(x) F(X)
T T 10
1 - N 0.8
b-a T b
| 5 ) S ;
' | i
! 041 :
i ]
E 02 !
: !
f‘:\ 00 . : .
a b X a X b X

Figure 10: A uniform probability density functifx) and its cumulative distribution
function F(x) (Wikipedia, 2006).

The uniform probability density functidiix) on the interval (a,b), and its

cumulative distribution functiori-(x) are as follows (Figure 10):

ﬁ for a < z < b,
0 forr<a
flz)= 0 forz<aorzr>b, Flr)=(i-, fora<r<b (59)
1 forr>b

n/d forr=aorzr=>=

Thus, to uniformly sample the random variable xj(Fe 10):
x=a+(b-a)é (60)

whereé is created by a random number generator unifomiilyin the interval [0,1].
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4. Non-linear inversion algorithm flow

The Monte Carlo inversion algorithm is written gpia structural programming
style. It includes all three basic structures -usege, selection, and repetition (Deitel and
Deitel, 2005). The flow consists of a five main ggs, combined into these three
structures:

1) Input

a. Input the following data into algorithm:

i. The window of seismic data, including the time grtdsckness
determined by the spectral inversion. The windowusth be
big enough and tapered to avoid the edge affectshén
inversion.

ii. Estimated or assumed probability density functidos the
model parameters and the number of layers (tygpeaifability
density function, mean, and standard deviationyeHeniform
probability function is used, as it is consideredot the least
biased.

iii. Time thickness from the spectral inversiaity).

iv. Starting acoustic impedance of a layg), Wwhich is considered
to be constant in the area, estimated from welblaig.

v. Number of trials and iteration3 @ndJ).

vi. Clean sand and shale acoustic impedarigesndlsy).
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2) Random sampling
a. Randomly sample the number of layers from givemitinp
b. Randomly sample the initial modeh’ from the given probability
density function T times).
3) lIterations (Figure 11)
a. For a given number of layers and initial model angut data J
times):
i. Determine Jacobian, and calculate the rank of Jaoold rank
is less therBL-1, this trial is ill-posed; thus, go to the step 2.
ii. Constraindty andly using Lagrange multiplers in to Marquardt-
Levenberg method and calculate the perturbation
iii. Perturb the initial model byfmy,.
iv. Compare actual data with the predicted data.dfsilnm of the
squares errors has satisfactory value or if ihéslast iteration
("), save the model parameters and Lagrange mutsplie
values only if the error is the smallest so fatwitspect to the
number of layers and go to the next trial (steg®@herwise, go
back to the next iteration with the initial mouahg,.
4) The number of degrees of freedom
a. Determine the minimum set of parameters to be usasked on
function laverage= f (L). If laverage O the layer of interest become stable
increasingL, the degrees of freedom are sufficiently high étedmine
the net-to-gross ratio of the layer of interest.
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5) Output
a. Determine a time net-to-gross ratio using the ed®oh model
parameters (starting acoustic impedargegnd gradient of the layer
of interest ¢x)), together with the given clean sang)(and shalel(,)
acoustic impedance values, using both ray and teffeanedium
theory.
The algorithm for Monte Carlo inversion was winitegn MATLAB and C
programming language. The C code was compiled form of dynamic link libraries

(DLL), allowing interfacing C functions to MATLAB.

Input:d(m) and m(Monte Carlo sampling)

Damped least-squares solution: minimized ¢ JAm)?
with linear equality constraintsAm=h

-1
Am | _| JxpA F'| | JAd
Lo F K
Linear model parameter estimation:
Miin =mM" + Am

Solution: m=myy >0 Y [d(m) — d(ma)]?= 0;

na

m’ = M,

Figure 11: Non-linear inversion - iterative proceeu
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5. Wedge models

To examine how different noise scale with variaai/¢l-time thickness affects
the results of the developed algorithm, wedge nwodet used; geologically, the wedge
models are actually pinch-out models. In additite wedge models are also used to
investigate the effects of the inaccurate constchvalues of travel-time thickness and
starting acoustic impedance.

To get synthetic data for which the model paransetee going to be estimated,
the convolution forward modeling is applied on thetual parameterization of the

inversion algorithm, and only a three-layer modedssumed.

5.1 The choice of the model parameter values

All parameters except the travel-time thicknesghef mid layer (reservoir) are
assumed to be constant in the models. In additi@nyalues for the acoustic impedances
of clean sand and shale to be used to calculateo+ggbss ratio using the equation 26
and 28 are considered to satisfy Gardner equdtiahjs, the empirical chart (Figure 12).
Using the chart, the acoustic impedance of thencéaand K9 is greater of the acoustic

impedance of the clean shalg)(; that is:
| .= 7510°[kg/(m*s)]andl , = 5510°[kg/(m?s)] (61)
The model parameters used in the inversion arardeted arbitrarily. However

the values for the starting acoustic impedancealfdhree layersl(, I, I3) are defined to
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be the values between the clean sand and cleaa shhles, as all three layers are
considered to be the mixtures of the sand and skalthermore, the starting acoustic
impedances of the reservoir (layer 2) are greatan the starting acoustic impedance of
the underlaying and overlaying layers (layer 1 @pth the model (Figure 13), assuming
that the reservoir rock contains the higher peeggtof the sand relative to the
overlaying and underlaying layers. The gradientses:,g2, andgs) in the model are
taken to be arbitrary, except that they are pasithecause in most cases in practice,

acoustic impedance increase with time/depth.

BULK DENSITY, GM/CM?
1.8 2.0 2.2 24 2.6 28 30
43 T T T T | —
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.2 3 4 5
LOGARITHM OF BULK DENSITY

Figure 12: P-wave velocity and density relationship
for different lithology (Gardner et al., 1974).
Having defined model values, the four wedge modedsexamined:
1) the model being noise-free

2) the model with 5% noise
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3) the model with 10% noise

4) the model with 20% noise

L=1,=610(SI) 1,=7106(Sl) Acoustic

impedance
At =24 ms
At=80 ms g,=0.02| At,=16,8,4,..., /16 ms
0;=0.01
Time in

ms

v
For L, 77.500 andd,,& 5.500

Figure 13: The parameter values used in the symthetdge models.

First, noise is considered to be random and with uhiform distribution. The
maximum amplitude of the random noise is calculatéth respect to the signal. One
hundred percent of the signal is assumed to besuhe of the absolute values of the
maximum and minimum amplitudes of the noise-fread&igure 14). Because of the
tuning effect, these extreme values vary with thigkhess. However, the hundred
percent of the signal in the algorithm is constagardless the thickness and corresponds
to the response of the model in which the layerkiiess is above the tuning travel-time

thickness, that is, above the half of the periothefdominant frequency (Figure 14).
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Signal §

Random noise S

\ v‘VI\ + Ls

Random noise in percent :/S*100
Figure 14: Definition of the noise added to thethgtic data.

Having defined the signal and noise in the previeay, the data with 5% noise,
for example, are the data with a random uniforms@diaving maximum (minimum)
amplitude of 2.5% (-2.5%) of the signal.

Second, the wedge models response is determindidcrete values of thickness,
so that the algorithm has tested thickness abdveauidl 8 ms), as well as below (4 ms, 2
ms, 1 ms, ¥2 ms, 1/4 ms, 1/8 ms, and 1/16 ms) thea@ry travel-time tuning thickness.
The two-way travel-time tuning thickness for Rickeavelet,4ty, has been determined

by the following equation (Chung and Lawton, 1995):

A, =6 (62)
o1t

wherefy is the dominant frequency of Ricker’'s wavelet. 8&se the dominant frequency
of Ricker’s wavelet in the synthetic case is coesd to be equal to the usual frequency
content of the seismic exploration data of 30 Hwe two-way travel-time separation

between the main and side lobe in the case of Rigkeelet is the following:

At,, = ﬁs = 0013 (63)
2130
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Therefore, the one-way travel-time tuning thickne€s.5 ms.

The algorithm used in the wedge models has only0 20@ls of Monte Carlo
random sampling. The standard deviation of the $shpniform probability density
function is assumed to be 10 % of the true valudh@fmodel parameters. Each trial, that
is, an initial model sampled from the uniform prbitity density function, has gone
through sixty iteration of model perturbation tongerge towards the neighboring
minimum. To create the accurate model data footileeway travel-time thickness below
the tuning effect in a given sampling rate, fits¢ resampling is performed according to
the gross thickness, assumed to be determineddayrapinversion. After the resampling
the data are resampled back into the original sagplate. Moreover, during the
inversion procedure, that is, perturbation of thedei, the resampling has been again
applied and resampled back to compare with theorespof the model. This approach

thus consumes lots of time, especially if the greshickness is very small.

5.2 The non-linear inversion results in noise-free environemt

The first wedge model is in noise-free environm@mgure 15). Because there is

no noise in the data, the solution of the invers®odeterministic. Therefore, the solution

of the inversion gives only one result — the est@da‘travel-time” net-to-gross ratio

based on the ray theory.
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1ms 1/2ms 1/4ms 1/|8ms 1/1§ ms

|

True “travel-time” Net/Gross:
0.7850 0.7650 0.7550 0.7525 0.7512 0.7506 0.7503502.7 0.7501
Estimated “travel-time” Net/Gross:

0.7850 0.7650 0.7550 0.7525 0.7512 0.7506 0.7503500.75.214
*The number is due to the relatively s mall numberials.

-Using 5000, estimated Net/Gross is 0.7501

Figure 15: The noise-free wedge model and the siwriresults.

As it was previously stated above, the non-lineaelision algorithm uses 2000
different initial models to estimate the model paeters, according to the defined
probability density functions of the model parametelrhus, assuming that the gross
travel-time thickness of the mid layer is knowrvmasdl as starting acoustic impedance of
the overlaying layer, the estimated travel-time-toegross ratios of the wedge model
exactly correspond to the true travel-time net4tosg ratios, that is, the travel-time net-
to-gross ratios calculated using the parametetsciivaesponds to the created synthetic
data. However, the estimated net-to-gross for thé-fins one-way travel-time thickness
showed an unfeasible result — 5.214. Increasingitimber of trials to 5000, the exact
solution is achieved, suggesting that the previsolsition of the inversion actually

converged to the local minimum.
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5.3 The non-linear inversion results in noisy environment

Although having the same maximum amplitude, théetbiht random noise added
into the data gives the different solution of theersion. Therefore, 200 different random
noise sequences (Figure 14) are examined for tine sgnthetic data corresponding to
each travel-time thickness in the wedge model.

The inversion results of the wedge models datahhatthe added random noise
are presented in the statistical form: a histogvath its mean and standard deviation
values of the 200 estimated “travel-time” net-togy ratios. Thus, each of these
estimated ratios corresponds to the different randoise sequence. Figure 16 shows one
of the statistical solutions of the inversion. bid@ion, only feasible results are included
into the histogram; in other words, only the estedatravel-time net-to-gross ratios

between 0 and 1.

a0 T T T T T T T T T

451 1

o

Jar

30

2

Solutiond
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g

D 1 1 1 1 1
1l 0.1 0.2 03 04 0.5 06 0.7 og 09 1

Met-to-Gross
Figure 16 The inversion results in the form of histogram (200 solutions).
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Again, the three levels of the noise are examinethb inversion algorithm: 5%
(Figure 17a), 10% (Figure 17b), and 20 % (Figure)1Bome inversion results are
consistent with the expectation: for each case,sthaller the level of the noise in the
model data, the smaller the standard deviatiohe@tblution histogram.

However, one would expect that for each case, thaler the thickness of the
mid layer (reservoir), the bigger the standard atm of the solution histogram
becomes, as the destructive interference of the ara side lobes of the wavelets from
the reflections. This behavior of the solutionsn@ always true: when the travel-time
thickness of the reservoir is close to the tuningkiness (6.5 ms), the inversion algorithm
gives the solution with smaller standard deviatibhan the expected. This relation
between solutions is due to the constructive ieterice between the main and side lobe,

making the signal stronger.

True “travel-time” Net/Gross:
0.7850 0.7650 0.7550 0.7525 0.7512 0.7506

16 ms 8 ms 4 ms 2ms lms 12ms  1/4ms 1/8ms 1/16ms

\

Estimated “travel-time” Net/Gross (1 — mean- standard deviation) :
u 0.778  0.749 0.743  0.802 0.803 0.799
G 0.078  0.088 0.068  0.077 0.079 0.121
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True “travel-time” Net/Gross:
0.7850 0.7650 0.7550 0.7525 0.7512 0.7506

16 ms 8 ms 4 ms 2ms lms 1/2ms 1/4Ams 1/8ms

Estimated “travel-time” Net/Gross (U — mean- standard deviation) :
v 0.765 0.690 0.746 0.824 0.788 0.687
G 0.124  0.143 0.104 0.108 0.159 0.238

True “travel-time” Net/Gross:
0.7850 0.7650 0.7550 0.7525 0.7512 0.7506

16 ms 8 ms 4 ms 2 ms 1ms 1/2ms 1/4ms 1/8ms 1/15 S

Estimated “travel-time” Net/Gross (4 — mean- standard deviation) :
u 0.665 0.612 0.700 0.701 0.658 0.474
G 0.214 0.198 0.165 0.242 0.259 0.371

Note: only reasonable results are included, théditas O to 1

(€)
Figure 17: The wedge models with (a) 5%,
(b) 10%, and (c) 20 % of noise and the inversisults.

Similar conclusions can be made regarding the nwfathe histograms: the
smaller the level of the noise in the model ddte, gsmaller the difference between true

travel-time net-to-gross and the mean of the smisti Likewise, the mean estimated for
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the region of the tuning thickness is sometimeshmtloser to the true value then the

mean estimated for the region of the thicker thédan

5.4 Inaccurate constraints

When the constraints are used in the inversiongaficone question naturally
arises — What are the effects on the inversionltesii the used constraints are
inaccurate? In the wedge-model synthetic case,g&rameters are constrained by the
non-linear inversion algorithm — starting acoustpedance of the underlying layer, and
travel-time thickness of the mid layer. Previoushe inversion of the wedge-models data
has been performed assuming that the constramt@caurate.

Before examining the effects of the inaccurate tamgs, it is important to
analyze the method used to constraint the datae, Heg method of Lagrange multipliers
is used, whose mathematical background is explaimedection 3.4 (Non-linear
inversion using constraints). In the method, th&ut&mn of the non-linear inversion
problem corresponds to the optimization-functiomimum satisfying the set of the
equality equations Km=k). Each of the equality equations used in the ap#tion
procedure is associated with the Lagrange multidie. The Lagrange multiplier is
crucial parameter in terms of understanding theat$fof the constraint on the solution of
the inversion problem.

Implementing the previous discussion in the wedgedeh case, the starting
acoustic impedance of the underlying layer andridneel-time thickness of the mid layer

are constrained using accurate and inaccurates/&duexamine this phenomenon.
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5.5 Inaccurate constraint — time-travel thickness

To examine the effects of inaccurate travel-timekiess values, which are
constrained within the developed algorithm, on itheersion results, the data from the
previous wedge models are used; thus, the modaiders values used in the modeling
algorithm are the same as in the previous wedgeemexamples (Section 5.1: The
choice of the model parameter values). Howeverdéia of only one thickness are
investigated; in this case (Figure 18), the dagacaeated modeling the 1-ms travel-time
thickness. Thus, the synthetic trace corresponiirige 1-ms travel-time thickness in the
wedge model are inverted using the inaccurate net thickness: 16, 8, 4, 2, 1/2, 1/4,
1/8 and 1/16 ms. The net-to-gross ratios applyioth itheories — ray and effective
medium — are estimated as well as Lagrange maligpbf the corresponding constraint

equality equation that involves one accurate amdra¢inaccurate travel-time thickness.

True Net/Gross: EMT: 0.774
RT: 0.751

1/2 ms 1/4ms 1/8ms 1/16 ms

=
.

o
p——

Estimated Net/Gross:
EMT: 0.508 0.317 0.422 0.533 0.774 >1(4.8) >1(5.3) >1(31) >1(73)
RT: 0.475 0.288 0.390 0.500 0.751 >1(6.3) >1(7.1) >1(52) >1(124)

Lagrange multiplier value:
106 106 1011 1013 1023 108 108 106 106

Figure 18: Inversion results using the inaccuratamstraint — travel-time thickness.
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First, regarding the estimated net-to-gross ratiatuitively, the bigger the
discrepancy between the accurate and used thickiesbiggest the error between the
true and estimated net-to-gross ratio. Second]#geange multiplier value associated
with the accurate travel-time thickness is closestero (13%) comparing with those of
the inaccurate travel-time thickness.

This relation between the Lagrange multipliers aicumate and inaccurate
constraint equality equations suggests, keepimgina the previous discussion about the
physical meaning of the multipliers (Section 3.4 nNimear inversion including
constraints), that the travel-time thickness doeshave to be constrained to have the
unique solution. Because the travel-time thicknesactually estimated using the same
set of data by spectral inversion and thus doesepresent priori information, it is not
surprise that this parameter does not have to h&rmeoned in the inversion algorithm.

However, in the real example, the spectral inversitetermined travel-time
thickness is going to be constrained and examiasdi is a mean of 1) biasing the
inversion in directions found to be desirable faterpretation purposes, 2) reducing the
dimension of initial-model space, and 3) deterngnihe resample rate in the inversion
algorithm.

In addition, the net-to-gross ratios estimated plated as a function of the
constrained travel-time thickness (Figure 19). @yedhe relations between these two

guantities are non-linear.
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unreal net-to-gross
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niy = 1

net-to-gross ratio
e
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Log2{constrained travel-time thickness)

Figure 19: The net-to-gross ratios vs. the consteal travel-time thickness.

5.6 Inaccurate constraint - starting acoustic impedance

The same synthetic data are used to examine tleet®fbf the inaccurately
constrained starting acoustic impedance of thelgugrlayer. However, in this case, the
assumption is that the travel-time thickness isvkmaorrectly, whereas the starting
acoustic impedance is constrained using one aecwatl several inaccurate values
within the range from 4 to 8 FOSI. The net-to-gross ratios as well as Lagrange
multipliers values corresponding to the given craists are estimated and calculated

(Figure 20), applying both ray and effective mediineories.
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50 1,555 |=6.0 6.5
True N/IG | ’ ’ §

EMT: : 0.774 1
RT: : 0.751 |

Estimated N/G:
EMT: -0.147 0.188 0.492 0.774 1.038 1.289 1.528
RT: -0.124 0.168 0.459 0.751 1.043 1.335 1.627

Lagrange multiplier value:
1023 1023 1023 1023 1022 1023 1022

Figure 20: The inversion results using inaccurab@straint — starting acoustic
impedance.

Again, here the bigger the error of constrainecueakhe bigger the error in
estimated results. However, here in a case oftragry bound, the relation between the
constrained value and estimated net-to-gross eatolinearly dependent, whereas the
relation, in a case of effective medium theory lwhus still non-linear but very close to
linear (Figure 21).

Speaking of the estimated Lagrange multipliersaréigss of the constrained
value, whether it is accurate (6.5) or not, theatue are the same! These constant
multipliers suggest that all constraints have tipea¢ “force” to change the minimum of
the objective function. In addition, the solutiohtbe inversion is non-unique, as the
objective function does not have a single globahimum. Therefore, such a parameter

has to be constrained withpriori information to have a unique solution. Thus, in the
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real example (chapter 4. Real example), a staatbogistic impedance of one of the layers

is constrained using the value determined frondifierent technique — well logging.

2 T T T T T T T
A
151 unreal
net-to-gross ratio
T L . i

True net-to-gross ratio

net-to-gross ratio
=
[y
T

Qp-mmmmmmmmmms """"""""""]i """"""""""""""""""""""""""" T
unreal net-to-gross EMT
05 tatio —— RT | |
nfg <0
_1 1 1 1 ‘f 1 1 | |
4 45 5 55 B 6.5 7 P o

constrained acoustic impedance

Figure 21: The net-to-gross ratio vs. constrain&ting acoustic impedance.

a7



6. Synthetic example — Multi-layer case

In the previous example, wedge models, there weeetassumptions limiting the
implementation of such an algorithm into the resec
1) The number of layers is known (though it could lséineated from
spectral inversion).
2) Only three layers are used.
3) The synthetic data were generated using the aparalmeterization

(unrealistic impedance profile).

2 25 3 35 « 45
Acoustic Impedance (10 SI)

50 L ! I
0.4 0.2 0 02 04
Apsolute amplitude

Figure 22: Generating synthetic data to be usetheinversion.
Therefore, another synthetic has been investigéteithe synthetic case, all three
previous assumptions are excluded: that is, thebeurof layers is considered to be
unknown and arbitrary, and the data are more tially adding the uniform random
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function on the acoustic impedance profile befaeating the reflection coefficient for
the synthetic data: on Figure 22, it is shown hbe $ynthetic data has been created:
First, the arbitrary acoustic impedance profile basn created (Figure 22a); then, the
reflection coefficient profile is derived form tlaEoustic impedance profile, and finally,
by convolution of Ricker wavelet and the reflectimvefficient profile (Figure 22b), the

data have been generated (Figure 22c).

Synthetic model

201
onstrined acoustic impedance (1.55)

Samples (ms)

layer of interest

120 - (constrained time-travel thickness (10 ms))

140+

160 -

2 25 3 35 4 45
Acoustic Impedance (1 08 Sl)

Figure 23: Used constraints in the inversion.

Now, in the inversion procedure, as in the preveyrghetic case, two parameters
have been constrained: a two-way travel-time tresknand starting acoustic impedance
of one of the layers. The assumption is that threndo is known from the spectral
inversion and the latter is known from the well loderpretation. Their values are
respectively, 10 [ms] and 1.55°f&g/m3 m/s] in this case (Figure 23).
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Figure 24: Ray theory “travel-time” net-to-grosstra
as a function of a number of layers.
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The inversion algorithm has investigated the affgicthe different number of
layers. There is only one deterministic solutiomet-to-gross ratio per the corresponding
number of layers for both theories — ray and eiffecimedium (Figure 24 and 25,
respectively). These solutions of the inversionespond to the global minimum solution
of objective function, that is, the smallest erpetween the synthetic data and estimated
data for each number of layers. The values of thiective function with the respect of
the number of layers used in the inversion aretgdobn Figure 26: It is clear that the
more degrees of freedom used in the inversion,ldébe error between the actual and
predicted data. In addition, the values of the hage multipliers associated with the

used constraints are shown on Figure 27.
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Effective-medium theory
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Figure 25: Effective medium theory “travel-time”tr®-gross ratio
as a function of a number of layers.
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Overall, 5-10trials were used to investigate different initiaddels with different
number of layers, assuming that the values areiwitie two standard deviations from

the mean of the uniform distribution, which is thput for the random sampling.

K10 Objective function
2 ‘ . . .
15 .
1 [ .
05} .
0 L
051 B
A -
15 b
2 L 1 1 1 1
7 8 9 10 11 12 13
Number of layers

Figure 26: Objective function as a function of
a number of layers.
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According to the values of net-to-gross ratio wtile respect to the number of
layers for both theories, ray and effective medilrigure 24 and 25, respectively), the
following can be concluded: by increasing the numbklayers and thus degrees of
freedom, the estimated net-to-gross ratio appraahthe “true travel-time” net-to-gross
ratio. In this case the model that has thirteeeraygives the very good estimation of the
net-to-gross ratio (Figure 34). This behavior altyumeans that the average of acoustic

impedance using the thirteen layers are the sartfeeas/erage of the target model.

I 10> Lagrange multipliers values

- - —traveltime thickness
acoustic impedance |

08

06+ A

04} .

02 B

0_

02 A

04} 4

06 b

08} B

E I 1 1 1 1
7 8 9 10 1 12 13

Number of layers

Figure 27: Lagrange multipliers of two constrainparameters
as a function of a number of layers.

This conclusion has been already seen in the iaversblems: the higher the
degrees of freedom, the better match between thealaand estimated model. For
example, it can be seen in designing matchingr fikeso-called Wiener least-square
filtering. The longer the length of the filter, thetter matching between the input and

desired output (Robinson and Treitel, 2001).
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On the other hand, it is interesting to mentiont thi@ best match for the
interpretation of the gradients gives the modet tizs the only eight layers (Figure 29).
According to the results, objective function (Figu26) and Lagrange multipliers that
correspond to the constraints (Figure 27) show @hbduop in their value, at that point
where the solution should be used for geologidarpretation.

The estimated models that correspond to the glofalma for each of the

number of layers are show bellow (Figure 28-34).

Target

—

/

Estimated

Figure 28: Inversion solution using seven layers.
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Target

Estimated

l

Figure 29: Inversion solution using eight layers.

\

Estimated

/

Figure 30: Inversion solution using nine layers.
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/ Target
Estimated

Figure 31: Inversion solution using ten layers.

Target

/

e

Estimated

Figure 32: Inversion solution using eleven layers.

55



% Target

Figure 33: Inversion solution using twelve layers.

Target

—

Figure 34: Inversion solution using thirteen layers




7. Real example — South Timbalier field

The South Timbalier field is located south from Istana in the Gulf of Mexico
(Figure 35). The available data from the fieldhe research are the post-migration stack
volume as well as geophysical well log data. Altfiouhere is available spectral
inversion volume for the area, it has to be disedrfilom the research as it was derived
using inaccurate synthetic ties from the previdusiys Therefore, the algorithm is going

to use the constrained travel-time thickness froefl lwgs rather then from the spectral

inversion results to estimate the feasibility of theveloped algorithm.

MAORGOM CITY
i {

Mss| AL
m}j&g‘%\ﬁ:@
a 24 48
T L1 1
GLF OF MEXICD P

Figure 35: South Timbalier field location (Stud€,/8).

The geological environment of South Timbalier fieddypical for the Gulf of
Mexico: sedimentary basins with various salt doares structures (Stude, 1978).

Because only one well at the location has the dmwolog data acquired, allowing
the accurate estimation of the seismic velocitthefformations, the research was limited

only to that well (Figure 36). In addition, becaubke density logs were not available in
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the we

I, the acousti

ic impedance was not diredlgudated but estimated from the given

velocity log. The estimation from the velocity shbwive sufficient accuracy for the

application, ass

uming the c nt density foigitien data window.
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ould be n Figure 36, the well 20 iedr through a sedimentary

identifying the shale-sand sequemcthe log, it allows us to implement

the developed algorithm for a given sequence. Sudequence has been identified

(Figure 37 — red dashed arrow). According to logad@igure 37), higher impedance

might su

ggest

that sequence should have more sameént then shale. Within the
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sequence, the target layer has been defined (FRuure black solid arrow). The target

layer is very thin; the two-way travel time thiclaseof the layer is 8 ms.
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F'i'gu're 37; Well Iog data and syhthetic tie in thelv2O.

To efficiently apply the developed algorithm, it @ucial to have a good
correlation between the acoustic impedance prafig some net-to-gross ratio indicator,
such as gamma-ray or electrical self-potential (8&)) logs in the shale-sand sequence
of the interest. For the given well, only SP logaisilable, and there is a correlation
between the acoustic impedance (track 2) and sédfapial log (track 1) in the area of
interest, making the algorithm applicable (Figure.3

To test the feasibility and application of the aash algorithm, the results of net-

to-gross ratio derived from the trace located retaie the well are compared with the
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results of net-to-gross ratio derived directly froime well log data. As a matter of fact,
the constrained data, that is, starting acoustpmesance of one of the layers and travel-

time thickness of the layer of interest, are usenhfthe same well log data.

7.1 Estimating net-to-gross from the well logs

As it was stated before, the electric self-poténtP) log can be used to
determine a net-to-gross ratio of a layer. The togjross ratio is defined by the

following equation:

_h._ SP-SSR (64)

Net/Gross, h ~ SSP_SSP
ss sh

where SP is electrical self-potential of the layer of irget, SSRs is a electrical self-
potential of clean send, af®B5R;, is a electrical self-potential of clean shale. dsihe
previous equation, the target layer in the resedra the net-to-gross ratio of 0.85
(Figure 37 — black arrow). Because electric seteptial is measured in depth, such a
determination of the net-to-gross should repre4%em” net-to-gross ratio.

In addition to estimating net-to-gross using tiecairve, the acoustic impedance
can be used to estimate travel-time net-to-gross (&ection 2.4 Calculating reservoir
travel-time net-to-gross ratio). Therefore, fromuatipns 26 and 28, using ray and

effective medium theory respectively:

| -1 (s
Net/ Grosg' =-"2" " and, Net/ Gross™ = SS( pean 2
lss_lsh meanlss_lsh

_12
Ish

the calculated net-to-gross for the target laye®.&7 and 0.89, respectively, which is

very close to the “true”, derived from SP curve.85
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7.2 Estimating net-to-gross from the non-linear seismic inveion

Before the data are included into the developedridlgn to estimate travel-time

net-to-gross ratio, they have to be prepared wighfollowing steps:

1)

2)

3)

4)

Perform the synthetic ties on the data in ordesctde the amplitudes of
the trace to their absolute values. Here, STRATAndson-Russell)
software has been used for the step. In this theeorrelation between
the synthetic and original trace has achieved #ileevof 0.82 (Figure
38a).

Determine the window of the trace that includesléyer of interest and
the anchor layer with the known value of startimgustic impedance
throughout the area of interest. The good choicetHe anchor layer
could be some shale sequence with a constant vhtoeghout the
field. It should be kept in mind that the layen®sld not be affected by
the edge effect, that is, the length of the useddewv should be
sufficiently large (Figure 38b).

Apply the tapers on the edges of the trace windowhat the edge
effects are reduced (Figure 38c).

Determine the values of the data to be constraitteat, is, starting
acoustic impedance of the anchor layer and two-wayel-time

thickness of the layer of interest (Figure 38d).
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5) Determine the acoustic impedance of the clean saddclean shale.
These should be the minimum and maximum acoustigedance
values in the shale and sand sequences, respgdtvehis case. Using
the well logs, the determined values for the clshale and the clean
sand are 1.6 and 5.4%8I units, respectively.
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Figure 38: Data preparation.

Now that data has been prepared the algorithm eamded to estimate the
acoustic impedance profile of the layer of interastl thus “travel-time” net-to-gross
ratio, assuming different number of layers in thede.

As it was previously stated in the multi-layer dytic case, random sampling

technigque has been used to investigate differetiglimodels. The number of trials that
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has been used here is about 40 million, roughlyilbom per one thickness. Therefore,
for each thickness there is one global minimum tamiy which has been used for

determining travel-time net-to-gross ratio.

Objective function

251

3 4 5 6 7 8 9 10 11 12
Number of layers
Figure 39: Objective function as a function of anher of layers.

Here the observations are the same as in the $inthelti-layer case — First, the
more layers in the model, that is, the higher degjref freedom in the inversion, the
smaller the objective function (Figure 39). Secahé, higher the degrees of freedom, the
more closely are the estimated net-to-gross rabim fseismic data to the estimated net-
to-gross ratio from the well log data (Figure 4@ a1). In other words, the estimated
acoustic impedance average of the layer of intasestoser to the average of acoustic
impedance determined from the well log data. Howewdat has been observed is that
with the higher degrees of freedom, the calculdezbbian is much often singular for a

given initial model; thus, it is more difficult tachieve well-posed solution. Moreover,
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the computational time increases by increasingitheber of layers, that is, model vector

dimension.
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Figure 40: Ray theory travel-time net-to-gross oati
as a function of a number of layers.

In addition, the interesting question stayed urstk/could we have known at the
beginning what is the sufficiently number of layerde used in the inversion?

First, the answer to the previous question woukklgven the spectral inversion
technique, but as it is not accurate, we coulduset it. Second, we can always do the
same scanning through different number of layers sae when the value of the net-to-
gross ratio (that is, acoustic impedance averaf#heolayer of interest is going to be
stable, and than use the result from the highegtede of freedom. This approach is

feasible only if the computational time is not tbgue.
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EFFECTIVE MEDIUM THEORY
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Figure 41: Effective medium theory travel-time teegross ratio
as a function of a number of layers.

The results of the global minimum solution for eveimber of layers are shown
below (Figure 42, 43, 44, 45, and 46). The odd remof layers are skipped just for
simplicity. It should be stated that with the higlegrees of freedom the estimated
acoustic impedance gradients of the layers areimetpretable. However, the general
trend of the estimated acoustic impedance gradmntke inversion has good match with

the regional trend of the well-measured acoustmedance gradients (Figure 46).
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Figure 42: Inversion solution using three layers.
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Figure 43: Inversion solution using five layers.
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\ Inversion a.

impedance

Figure 44: Inversion solution using seven layers.
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Figure 45: Inversion solution using nine layers.
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Figure 46: Inversion solution using eleven layers.
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8. Conclusions

Constraininga priori information in the inversion algorithm clearly hetp in
getting the unigue solution of the seismic invangiwoblem, that is, achieving the global
minimum of objective function. It was found thateostarting acoustic impedance in the
model had to be constrained in order to achievéailoninimum of the objective
function. This conclusion was suggested using ymehetic wedge model (Section 5.4 —
Inaccurate constraints), where all constraint \&lwehether accurate or inaccurate, had
the same very weak magnitude of “force”, that iagtange multiplier value, ~¥86,
making solution non-unique.

However, travel-time thickness of the layer of et does not have to be
constrained to have a non-unique solution, bug & imean for biasing the inversion in
directions found to be desirable for interpretatpurposes. It was found in the same
synthetic wedge model that when the accurate tb&knwvas constrained, a unique
minimum value of Lagrange multiplier was achieved® magnitude comparing to the
other inaccurate values, making solution unique.

Furthermore, a random sampling technique, ofteled¢dfionte Carlo sampling,
provides the way of scanning complete model spacethfe sufficiently good initial
model. Each of the solution for each of the ihitireodel has been compared to get one
with the minimum error, thus, avoiding the localnimum, to be the solution of the
seismic inversion. In the real example at SouthbEiler field, it was shown that twenty

million trials were sufficient to achieve satisfat results. Further investigation could be
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done to computationally determine optimal numbetriis that should be used in an
inversion process.

The number of layers is crucial in the efficiendytlee developed algorithm to get
accurate and/or stable result. The more numbexyefs$ involved in the inversion, that is,
the higher degrees of freedom in the inversion usede inversion, the closer estimated
net-to-gross ratio to the actual net-to-gross r&io the other hand, the higher degrees of
freedom used in the inversion, the less stablessilt, that is, the more difficult is to
achieve a non-singular Jacobian in the inversiow, the longer computational time of
the inversion. Here, the well-posed solutions, ithathe solutions with the non-singular
Jacobian, were achieved with the models with theber of layers between three and
twelve. The least-square error with three-layedetglobal solution was ~2.1, whereas
with twelve-layer model global solution was ~0.1##ich is improvement in matching
actual with predicted data fourteen times.

Travel-time thickness net-to-gross ratio can bedgwalicator of the quality of
reservoir. When the correlation between the acoustpedance and SP log has been
achieved, the estimated net-to-gross ratio gavg geod estimation of the layer of
interest, even though the layer is below “converd@iceismic resolution”, quarter of the
dominant wavelength. For the layer of interesthia tesearch, using SP, the net-to-gross
ratio was estimated to be 0.85, whereas usingdiseng inversion, the “travel-time” net-
to-gross was estimated to be 0.87 and 0.89 foraray effective medium theories,
respectively.

However, the estimated gradients of the layerseinegal should not be used in
the interpretation, but on the other hand, the g@neend of the estimated gradients has a
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very good qualitative match with the actual onet tils, the one directly measured in the

well.
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