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Abstract 
 

Theoretically, given gross reservoir thickness and seismic impedance of a binary 

sequence of pay and non-pay layers comprising the reservoir, it is possible to invert for 

net pay thickness if the properties of the layers are known. To determine the acoustic 

impedance, a post-stack constrained non-linear inversion that combines the random 

sampling technique is used. 

It is found that first, an acoustic impedance of one of the layers has to be 

constrained to achieve unique solution. Second, Monte Carlo sampling technique allows 

convergence to the global minimum rather than local minimum in the optimization. 

Third, the greater the number of layers involved in the inversion, the closer estimated net-

to-gross ratio is to the actual net-to-gross ratio. Finally, the inversion technique gives 

good estimation of the net-to-gross ratio when there is a good correlation between a net-

to-gross ratio indicator and acoustic impedance, as it was found in South Timbalier field.  
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1. Introduction 

 

Implementing a priori information into an inversion algorithm can reduce the 

number of solutions and even cause the solution to be unique (Menke, 1984). A priori 

information can be seen as additional data regarding model parameters, which are 

acquired independently from the actual data. The actual data in this research include a 

window of a migrated seismic time section representing the normal incident response, 

whereas a priori information in the research includes acoustic impedance determined by 

well logging interpretation. In addition, parameters inferred by spectral inversion are 

included into the algorithm as constraints. They are not a priori, as they are derived from 

the data itself. However, they can be regarded as such by the inversion method, as a 

means of 1) biasing the inversion in directions found to be desirable for interpretation 

purposes, and 2) reducing the size of the initial-model space.  

In the research, these two pieces of information are included into a non-linear 

inversion algorithm to produce acoustic impedance in time and, thus, combined with 

additional petrophysical information for a given layer, a net-to-gross ratio of a reservoir.  

Synthetic wedge models are used to examine the effectiveness of such a non-

linear inversion algorithm. In the examples, the synthetic data with various signal-to-

noise ratios are inverted for model parameters, used to calculate the net-to-gross ratio of a 

layer. In a noise-free environment, the algorithm gives the deterministic solution – only 

one solution. However, in the presence of noise, for the same signal-to-noise ratio, 

different random noise is used and thus the algorithm gives the statistical solution in a 

form of histogram, standard deviation, and the mean value of predicted net-to-gross ratio. 
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Because the wedge model has assumed only three layers in the model and data to 

be inverted have been created from the actual parameterization of the inversion 

algorithm, another synthetic case is investigated. Here it is investigated the effects of the 

number of layers on the inversion result. 

Finally, the same multi-layer algorithm is applied on a real dataset – South 

Timbalier field data. 

There are not many examples in the literature that address the problem of 

determining the net-to-gross ratio of the layer with thickness below the seismic 

resolution. Most of the techniques used tried to estimate the gross thickness of the layer 

(Widess, 1973; Partyka et al., 1999; Marfurt and Kirlin, 2001; Castagna et al., 2003). The 

only attempt for solving the problem was using the spectral inversion (Partyka et al., 

2006). This technique is actually also an inversion technique; however, it is in the 

frequency domain. 
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2. The quality of a hydrocarbon reservoir – the net-to-gross ratio 

 

A net-to-gross ratio could be defined in different ways. In 1D case, 

petrophysicists assume that the net and gross thicknesses are dependant on the cut-off 

porosity. Thus, the total thickness of the reservoir with porosity greater then the cut-off is 

considered to be the net thickness, whereas the gross thickness is total thickness of the 

reservoir, including all values of porosity. However, because a sand-shale hydrocarbon 

reservoir is assumed here, usually net thickness is considered to be the thickness of sand, 

whereas gross thickness is the total thickness of the reservoir, including the shale and 

sand thickness (Figure 1). 

Figure 1: Net vs. gross thickness in the sand-shale sequence (1D case).  

 
To examine the dependency of the quality of the reservoir on the acoustic 

impedance, there are two theories to be considered: ray theory and effective medium 

theory. These two theories correspond to the two so-called bounds: Voigt and Reuss, 

respectively. 
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2.1 Ray and effective medium theory 

 
The ray theory is consistent with the observations if the wavelength (�) of the 

wavelet dominant frequency is much less then the scale (d) of the layering (�<<d ).  In the 

ray theory, it is assumed that all constituents experience the same stress, representing the 

isostress or Voigt bound (Voigt, 1910). Furthermore, the effective elastic modulus (M) of 

the overall medium (in 1D case, stack of the layers), through which the wave propagates, 

is the arithmetic average of its constituent’s moduli (Mi). Therefore, using the volume 

fractions (fi): 

∑=
i

ii MfM  

On the other hand, the effective medium theory is consistent with the observations 

if the wavelength (�) of the wavelet dominant frequency is much bigger then the scale (d) 

of layers (�>>d ). In the effective medium theory, it is assumed that all constituents 

experience the same strain, representing the isostrain or Reuss bound (Reuss, 1929). 

Moreover, the effective elastic modulus of the overall medium is the harmonic average of 

its constituent’s moduli, often called Backus average (Backus, 1962). Thus: 

1−









= ∑

i i

i

M

f
M  

However, the effective density of the medium (� ) is the arithmetic average of its 

constituents’ densities (� i) in both theories: 

∑=
i

iif ρρ
 

(2) 

(3) 

(1) 
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Using the previous equations, the ray theory can be represented by the time-

average or so-called Wyllie’s equation (Wyllie et al., 1956): 

∑=
i i

i

V

f

V

1 , or ∑∆=∆
i

itt  

whereas the effective medium theory can be represented by the following equation 

(Marion et al., 1994) : 

∑=
i ii

i

V

f

V 22

1

ρ
ρ  

where V is the effective seismic-wave velocity of the observed medium, Vi are the 

seismic-wave velocities of the medium constituents, � t is the seismic travel time through 

the medium, and � ti are the seismic travel time through the medium constituents.  

These two simplest bounds or theories explain how the medium behaves in the 

extreme cases – very low and very high frequency compared to scale of the anisotropy. 

Defining these cases, all other media behavior is any combination of them. Therefore, 

applying these theories and determining the bounding net-to-gross ratios of the reservoir, 

through which the seismic wave propagates, give the range of all possible values of the 

net-to-gross of the reservoir. 

 

2.2 Travel-time net-to-gross ratio – ray theory 

 

Again, in 1D case (Figure 1), the net-to-gross ratio of the shale-sand reservoir is 

the ratio of the sand thickness (hss) and total thickness (h).  

First, using the ray theory or starting from equations 3 and 4:  

(4) 

(5) 
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ssssshsh ff ρρρ +=   and  

ss

ss

sh

sh

V

f

V

f

V
+=1  

where sh and ss are subscripts representing the shale and sand constituent of the medium 

(reservoir). Because the normal incident wave is examined, that is 1D case, the volume 

fractions fi represents the fractions of the corresponding thickness: for shale, hhf shsh /=  

and for sand, hhf ssss /= . Thus, the density equation can be rewritten in the following 

form: 

ssssshsh hhh ρρρ +=  

Because tVh ∆=  where V is seismic-wave velocity, the equation becomes: 

ssssssshshsh tVtVtV ∆+∆=∆ ρρρ  

Furthermore, as acoustic impedance I is defined as ρV : 

ssssshsh tItItI ∆+∆=∆  

Now substituting sht∆  using the time-average equation, sssh ttt ∆−∆=∆ , in the 

previous equation: 

sssssssh tIttItI ∆+∆−∆=∆ )(  

Finally: 

t
shss

shss GrossNet
II

II

t

t
/=

−
−=

∆
∆

 

where I, Iss, and Ish are P-wave acoustic impedances of the reservoir, sandstone, and 

shale, respectively. 

(10) 

(11) 

(12) 

(7) 

(8) 

(9) 

(6) 
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Therefore, knowing acoustic impedance of a reservoir, together with acoustic 

impedances of clean sand and clean shale, the travel-time net-to-gross ratio can be 

estimated. 

 

2.3 Travel-time net-to-gross ratio – effective medium 

 
Now, the effective theory for shale-sand medium gives, equation 3 and 5:  

 
ssssshsh ff ρρρ += and  









+= 222

1

ssss

ss

shsh

sh

V

f

V

f

V ρρ
ρ  

For 1D case, both equations can be rewritten in the following form: 

222
ssss

ss

shsh

sh

V

h

V

h

V

h

ρρρ
+=  and 

ssssshsh hhh ρρρ +=  

and as tVh ∆= , the equations becomes: 

ssss

ss

shsh

sh

V

t

V

t

V

t

ρρρ
∆+∆=∆ and 

ssssssshshsh tVtVtV ∆+∆=∆ ρρρ  

Furthermore, introducing the acoustic impedance I as ρv :  

ss

ss

sh

sh

I

t

I

t

I

t ∆+∆=∆  and 

ssssshsh tItItI ∆+∆=∆  

Now substituting sht∆  of the first equation: 

(19) 

(14) 

(15) 

(17) 

(13) 

(16) 

(18) 

(20) 
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






 ∆
−∆=∆

ss

ss
shsh I

t

I

t
It  

into the second, the following equation is derived: 

ssss
ss

ss
shsh tI

I

t
I

I

t
ItI ∆+∆−∆=∆ 22  or 

ss
ss

sh
ss

sh t
I

I
It

I

I
I ∆








−=∆








−

22

 

Finally: 

( )
( ) t

shss

shss

ss

sh
ss

sh

ss GrossNet
III

III

I

I
I

I

I
I

t

t
/22

22

2

2

=
−
−=

−

−
=

∆
∆

 

Using the effective medium theory, the same conclusion is derived: knowing 

acoustic impedance of a reservoir together with acoustic impedances of clean sand and 

clean shale, the travel-time net-to-gross ratio can be estimated. 

 

2.4 Calculating reservoir travel-time net-to-gross ratio 

  
One can easily prove that knowing the average acoustic impedance of the 

reservoir, Imean, and clean sand and clean shale acoustic impedances, Iss and Ish is 

sufficient to determine the travel-time net-to-gross ratio of the reservoir; that is, the net-

to-gross ratio determined from each infinitesimal layer dt (Figure 2) with acoustic 

impedance I is directly related to the mean of the acoustic impedance Imean. This 

argument stands for both Voigt and Reuss bounds. To prove that for the Voigt bound, 

using the equation 12:  

(21) 

(24) 

(23) 

(22) 



 

9 

12

1

2/
tt

dt
II

II

GrossNet

t

t shss

sh

t −
−

−

=
∫

 

where t2 is one-way travel time to the bottom of the reservoir and t1 is one-way travel 

time to the top of the reservoir (Figure 2); therefore, t2 – t1 is the travel-time gross 

thickness. In a discrete form: 

=−

−








=−
−

=
∆

∆
−
−

=

∑
∑∑

n

II

nII

n

II

II

tn

t
II

II

GrossNet shss

sh
i

i

i shss

shi

i shss

shi

t/  

shss

shmean

shss

sh
i

i

shss

sh
i

i

II

II

II

I
n

I

n

II

nII

−
−=

−

−
=−

−








=

∑∑

 

Therefore, to calculate travel-time net-to-gross only the mean value of the 

acoustic impedance of the reservoir is sufficient. Now the same can be applied for the 

Reuss bound; thus, starting from equation 24: 

( )
( )

12

22

221

2/
tt

dt
III

III

GrossNet

t

t shss

shss

t −
−
−

=
∫

 

in the discrete form: 

( )
( )

( )
( ) ( )

=








−

−
=

−
−

=
∆

∆
−
−

=
∑ ∑∑∑

n

I

I

I

I

II

I

n

III

III

tn

t
III

III

GrossNet
i i i

sh

i

i

shss

ss

i shssi

shiss

i shss

shiss

t

22

2222

22

22

22

/  

(26) 

(25) 

(27) 
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( )
( )

( )
( )22

222

22

2

22

shssmean

shmeanss

I
i

shi
i

shss

ssI
i

sh

i
i

shss

ss

III

III

n

I

I

n

I

II

I

n

I

I
I

II

I

−
−

=





















−
−

=
















−
−

=
∑

∑∑
∑

 

Again, the same conclusion can be made: the knowing of mean value of the 

acoustic impedance of the reservoir suffices to determine the travel-time net-to-gross 

ratio of the reservoir. 

Figure 2: Real and average acoustic impedances – the same net-to-gross ratio. 

 

In this research, acoustic impedance of the reservoir is going to be estimated using 

non-linear inversion, whereas the acoustic impedances of the clean sandstone and shale 

are going to be estimated from the well logging measurement. The output of the inversion 

is not the average thickness of the reservoir but the starting acoustic impedance of the 

(28) 

Acoustic impedance 

Depth/ 
Time 

Acoustic impedance Ish Iss Ish Iss 

Depth/ 
Time 

dt 

t1 

t2 
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reservoir I0 and gradient of the acoustic impedance within the reservoir g, so that the 

average can be easily calculated: 

n

ng
II mean

))1(...21(
0

−++++=  

where n is the travel-time thickness of the reservoir. 

 

2.5 True net-to-gross ratio 

 
Now, to calculate net-to-gross ratio in depth domain, that is, true net-to-gross 

ratio, the ratio between the velocity of clean sand Vss and the velocity of reservoir V is 

needed:  

For ray theory: 

V

V
GrossNet

V

V

II

II

tV

Vt

h

h
GrossNet ss

t
ss

shss

shssssss // =
−

−=
∆

∆==  

 For effective medium theory: 

( )
( ) V

V
GrossNet

V

V

III

III

tV

Vt

h

h
GrossNet ss

t
ss

shss

shssssssss // 22

22

=
−
−

=
∆

∆
==  

Hence, if the ratio of clean sand velocity and velocity of reservoir is close to one, 

the travel-time net-to-gross ratio could be very accurate in the estimation of the economic 

value of the reservoir. 

 

(30) 

(31) 

(29) 
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3. Theory of seismic inversion 

 

To study any physical system, three elements are to be included (Tarantola, 

2005): 

1) Forward modeling – which uses the discovered physical laws on given 

values of model parameters to predict the observable data (Figure 3). 

2) Parameterization of the system – which includes discovery of the minimal 

sets of the model parameters, whose values completely characterize the 

system. 

3) Inverse modeling – which uses the measurements of the observable data to 

estimate the actual values of the model parameters (Figure 3). 

Figure 3: Forward vs. inverse modeling (Treitel et al., 1993). 
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Forward modeling and inverse modeling (or inversion) are two opposite 

processes (Russell, 1988): forward modeling is a procedure for creating model data from 

the known model parameters; conversely, inverse modeling or inversion is a procedure 

for extracting model parameters from the acquired data. Consequently, two spaces can be 

defined: model space and data space. Thus, model parameters represent a vector in the 

model space, usually denoted by m, whereas seismic data represent a vector in the data 

space, usually denoted by d: 

[ ]TMM mmmmm 121 ... −=  

[ ]TNN ddddd 121 ... −=  

where M and N are dimensions of the model and data spaces, respectively. 

 

3.1 Forward modeling 

 

To develop a forward modeling algorithm in a noise-free environment, a seismic 

data in time domain dt can be regarded as convolution of a seismic wavelet wt and 

reflectivity function r t: 

τ
τ

τ −∑= tt rwd  

For normal incident waves, pressure reflection coefficients depend only on 

acoustic impedances of media VI ρ= : 

jjjj

jjjj

jj

jj
j VV

VV

II

II
r

ρρ
ρρ

+
−

=
+
−

=
++

++

+

+

11

11

1

1  

where �  is density, and V is P-wave velocity of a layer. 

(33) 

(32) 
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Using the previous equations, one can easily develop an algorithm for seismic 

forward modeling: knowing the model parameters, P-wave acoustic impedances with 

time, and the source signature and combining the equations 13 and 14, a synthetic seismic 

trace can be produced.  

To use this forward model, there are many assumptions. First, the effects of 1) 

geometrical spreading, 2) transmission, and 3) all multiples have been removed and 

properly compensated in the given seismic data. Second, the seismic trace is calibrated in 

such a way that the amplitude of the seismic data represents the absolute values 

corresponding to the reflection coefficients. Third, the data are noise-free. 

 

3.2 Parameterization 

 

A very important part to be included into the inversion and forward modeling 

concepts is how the model parameters are defined to completely characterize the system 

– in this case, the model is defined by the P-wave acoustic impedance profile and the 

source signature. The acoustic impedance profile is represented using so called discrete 

interval parameterization (Cooke and Schnieder, 1983). This type of parameterization 

involves three parameters for each of L layers in the profile: (1) starting acoustic 

impedance I i, (2) two-way travel-time thickness of layers �ti, and (3) acoustic impedance 

gradient gi (Figure 4), where i = 1, 2, 3 … L (Figure 4).   
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Figure 4: Discrete interval parameterization of acoustic impedance with time. 

The source signature is considered to be Ricker wavelet (Figure 5). Ricker 

wavelet is a zero-phase wavelet representing a second derivative of the Gaussian function 

or the third derivative of the normal probability density function (Sheriff, 2002) To define 

Ricker wavelet, only one parameter is needed – the dominant frequency fM. Thus, in time 

domain, the equation for the Ricker wavelet is the following: 

( ) 22222221)( tf
M

Metftf ππ −−=  

 

Figure 5: Ricker wavelet -  a) time domain and b) frequency domain (Sheriff, 2002). 

 

(34) 

gi 

Ii 

t 

I �
ti i th layer 
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The dominant frequency can be related to mean frequency fmean: 

Mmean ff 






= 2/1

2

π
 

Now when the parameterization has been defined, a dimension of the model space 

and thus model vector can be determined. If the number of layers is L, by constraining the 

travel-time thickness of one layer, two of L travel-time thicknesses are dependent on the 

other L – 2 travel-time thicknesses; thus, because a source signature is defined by one 

parameter (dominant frequency), the number of 3*L-1 parameters is needed to 

completely characterized the physical system: 

[ ]TMLLL ftttgggIIIm 2212121 −∆∆∆= LLL  

The only problem left regarding parameterization is the number of layers (L) used 

in the inversion. To estimate number of layers, that is, actually to estimate the number of 

degrees of freedom, the applied algorithm uses a scanning technique. The different 

number of layers is investigated; thus, with increasing the number of layers, when the 

average of the acoustic impedance of the layer of interest becomes stable, it suggests that 

the degrees of freedom are good enough for the purpose of the estimating net-to-gross 

ratio. The detailed analysis is given in the Section 6: Synthetic example – Multi-layer 

case. 

  

3.3 Non-linear inversion 

 

Now, when the forward model and parameterization are defined, the inversion 

procedure should be determined. Generally, there are two types of the inversion: linear 

(35) 



 

17 

and non-linear. As their names imply, linear and non-linear inversions solve for the 

model parameters that linearly and non-linearly affect the data, respectively. 

 

Figure 6: One minimum in the objective function - E(m) of a linear model  parameter – m 
(Menke, 1984). 

 

Both linear and non-linear inversion algorithms are usually solved by the 

optimization of an objective function. This function is most commonly the sum of the 

squares errors of observed and predicted data although it can be any kind of a norm 

function. The least squares technique is most popular because its solution represents the 

maximum likelihood solution, if the data errors follow Normal (Gaussian) distribution 

(Menke, 1984). 

Using any optimization technique, the unique solution of the inversion should be 

the global minimum of the function. Furthermore, the objective function of a linear 

problem shows only one minimum (Figure 6), whereas the objective function of a non-

linear problem can have one global as well as local minimum (Figure 7). This difference 
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in the complexity of the objective functions forces geophysicists to treat these problems 

separately.  

As it can be seen from the forward convolution modeling (Equations 32 and 33), 

the acoustic impedances and wavelet parameters are related non-linearly, that is, they 

non-linearly affect data. Therefore, the non-linear inversion must be used to solve for the 

parameters. 

Figure 7: The objective function of a non-linear model parameter  
could have one global minimum and local minima  (Menke, 1984). 

 
There are many different approaches to solve non-linear inverse problems. One of 

the non-linear inversion techniques is an iterative procedure using Taylor series 

expansion and forward model algorithm to extract the model parameters. This technique 

is often called Generalize Linear Inversion. It consists of representing any seismic data 

d(m) for which parameters m should be solved for in terms of a synthetic seismic trace 

d(m�) for which model parameters m�, called initial model parameters, are known:  

...
!2
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Figure 8: Taylor series – linear vs. true model parameters. 

Assuming that any function, non-linear in this case, shows linear character in the 

neighborhood of d(m) and putting d(m�) on a left-hand side, the previous equation can be 

simplified and easily depicted graphically (Figure 8):  

)'(
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This equation can be solved for (mlin-m�) and shown in a matrix form: 
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where M is a number of model parameters and N is a number of data. Simplified:   

dJm m ∆=∆ −1  

(37) 

(38) 

(39) 
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where Jm is an MxN matrix, known as a sensitivity matrix or Jacobian. 

 To avoid ill-posed solution of the estimated model parameters, a geophysicist 

must consider the relationship between a number of data (N), a number of model 

parameters (M), and a number of linearly independent pieces of information in a kernel 

matrix or Jacobian (P) (Richardson and Zandt, 2005). Therefore, there are four 

possibilities - classes: 

1) Class I: P=M=N – often called evendetermined problem. This type of 

problem has one unique solution and predicted model exactly fit the data. 

2) Class II: P=M<N – often called overdetermined problem, which is mostly 

present in geophysics practice. This type of problem has only one solution 

and the predicted model does not exactly fit the data. 

3) Class III: P=N<M – often called underdetermined problem, which is also 

used in geophysics practice. This type of problem gives an infinite number 

of model parameters solutions, which exactly fit the data. Usually, to form a 

unique solution, another criterion is needed. For example, the solution must 

have a minimum length.  

4) Class IV: P<M<N, P<N<M or P<M=N. Both model and data space have 

higher dimension then the number of linearly independent pieces of 

information, making the problem ill – posed.  Non-uniqueness exists in both 

directions – data space and model space.  

 In this research procedure, the number of data (N) and model parameters (M), and 

a rank of Jacobian (P) makes class II – overdetermined problem, which is accomplished 

by the following: 
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1) choosing the number of data to be greater then model parameters, and 

2) constraining one model parameter – starting acoustic impedance of one of the 

layers 

Actually, two model parameters are constrained, here. However, only one is 

important in terms of the solving the non-uniqueness problem, which is going to be 

explained in Section 3.4 – Non-linear inversion including constraints.  

Furthermore, in the class II problem, minimizing the objective function – |
�

d(m)-

J
�

m|2, the least-squares solution, often called a Gauss-Newton solution, is derived: 

dJJJm T
mm

T
m ∆=∆ −1)(  

Finally, model parameters are estimated using the initial model parameters m� and 

the solution of the previous least-squares technique �m: 

mmmlin ∆+= '  

The model parameters mlin (Figure 8) would represent the estimated model 

parameters only if 1) the model parameters linearly affected in the neighborhood d(m) 

and d(m') and/or 2) a least-squares error 
2

))()((∑ − linmdmd  had a satisfactory small 

value. If these two previous conditions are not satisfied, iteratively the error can be 

reduced, where the estimated parameters mlin become new initial model parameters m�. 
Thus, a non-linear inversion usually starts with defining the initial model, and the 

inversion algorithm solution iteratively converges to the neighboring minimum or even 

maximum, so that the solution of this type of non-linear inversion algorithm could be not 

only the desired global minimum but also a local minimum or even a maximum (Figure 

7). Consequently, the mathematical solution of the optimization could be any of these 

(41) 

(40) 
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minima and maxima. One of the ways to find a global minimum instead of a local 

minimum or maximum is to search model space by random sampling – often called 

Monte Carlo sampling. In addition, using the constraints, the number of dimensions in the 

searching model space is reduced. 

 

3.4 Non-linear inversion including constraints 

 

The previous analysis represents an unconstrained least squares or Gauss-Newton 

solution of the inverse problem, and it could be used if no other information regarding 

model parameters is available. If additional pieces of information regarding some 

parameters are known, for example, their relations or their values, they can be 

implemented and thus can improve the least-squares minimization.  

The following matrix relation can represent the general form of equality relations: 

kFm =  

where F is a KxM matrix to be formed according to the additional information , m is a M-

dimensional vector of model parameters, and k is a K-dimensional vector to be formed 

according to the additional information as well. (M is the number of model parameters 

and K is the number of additional relations, that is, the number of constraints.) 

Thus, for example, if travel-time thickness of two beds determined by other 

method are denoted by t0 and t2 and because the initial travel-time thickness for these two 

beds are the same, denoted by '
0t and '

2t , the corresponding perturbations should be zero:  

00 =∆t  and 02 =∆t  

(42) 

(43) 
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or in the matrix form: 
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One of the ways to constrain the equality relations regarding model parameters is 

to use Lagrange multipliers. Lagrange multiplier – � is a scaling factor between two 

vectors – the gradient of objective function and the gradient of an equation that defines 

additional information to be incorporated into the optimization process (Figure 9). 

Figure 9: Graphical explanation of Lagrange multiplier (Jensen, 2004). 

To derive the physical meaning of the Lagrange multiplier, first, it is clear that the 

obtained minimum (or maximum) of the objective function is a function of the values 

used to constrained the given parameter, that is, the value of k; thus, such a function can 

be defined as follows (Karabulut H., 2006): 

),()( min kmEkR =  

(44) 

(45) 
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where the function R(k) is the value of the obtain minimum (or maximum) of the 

objective function, satisfying the given constraints.  

Now, the derivative or gradient of the previous function with the respect of the 

vector k is going to be the following: 

dk

dm
kmEgrad

dk

dm

m

kmE

k

kR
kRgrad mk )),((

),()(
)( min

min =
∂

∂=
∂

∂=  

From Figure 9: 

gradm E(m,k) = � gradm (Fm – k) 

Therefore: 

dk

dm

m

k
F

dk

dm

m

kFm

dk

dm
kFmgradkRgrad mk 









∂
∂−⋅=

∂
−∂⋅=−⋅= λλλ )(

)()(  

Finally, as F is not function of k, then: 

λλ −=
∂
∂−=

dk

dm

m

k
kRgradk )(  

 Therefore, the multiplier is the derivative of the obtained minimum (or 

maximum) of the objective function with the respect to the constraint value. Again: 

k

kmE

k

kR

∂
∂−=

∂
∂−= ),()( minλ  

There are few interpretations to be made about the previous simple relation:  

1) If � is close to zero, the change in constraint value (k) has not affected the 

obtained minimum of the objective function (E).  

2) If � is constant with changing k, it suggests that the parameter involved in the 

constraint equation behaves as an annihilator, making the solution non-unique; that is, 

(50) 

(46) 

(47) 

(48) 

(49) 
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the objective function is insensitive to its change. Therefore, such a parameter should be 

constrained by a priori information in order to solution be unique.  

2) On the other hand, if � is not constant, the change in k has affected the value of 

the objective-function minimum. The sensitiveness of the objective function on a change 

in the k value of the constraint equality equation suggests that if there is a unique k value 

that is close to zero, then the constrained parameter does not have to be defined by a 

priori information and the solution is unique. In other words, the solution of the 

constrained inversion will correspond to the unconstrained minimum of the objective 

function. In addition, in the case where the bigger the � becomes, the higher the force of 

the constraint.  

In conclusion, Lagrange multiplier is a kind of indicator if the parameter should 

be constrained or not: if it has constant value with changing the constrained value of the 

parameter, the parameter must be constrained to have unique solution of the inversion, or 

if it has a minimum (preferably close to zero), which corresponds to unique constrained 

value of the parameter, then the parameter does not have to be constrained to have a 

unique solution. This usage of Lagrange multiplier was investigated in the chapter 5 – 

Wedge models. The application of such a Lagrange multiplier interpretation is 

investigated only on the wedge synthetic models.    

Now, how to implement the constraints with Lagrange multipliers technique? 

Using the relation involving Lagrange multipliers (Figure 9) together with the least-

squares optimization, the following solution is derived (Menke, 1984): 
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In addition, to ensure the convergence of the inversion solution into the 

neighboring minimum, the Gauss-Newton solution can be modified into Marquardt-

Levenberg solution, which implements the following equality equation into the solution: 

0=∆∆ mmTβ  

Lagrange multiplier �  is often called damping factor. It prevents unbounded 

oscillations in the solution, that is, smooth the model parameter change vector �m (Treitel 

et al., 1993). Using the equation 49, Marquardt-Levenberg solution of the least-squares 

optimization becomes: 

dJIJJm T
mm

T
m ∆+=∆ −1)( β  

where I is an MxM identity matrix 

Finally, Marquardt-Levenberg least-squares minimization implementing 

additional information in the form kmF =∆  is the following: 
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 In addition to this algorithm, if again the L is the number of layers, the additional 

information on two of 3L model parameters are constrained by the previously explained 

technique: the starting acoustic impedance of one layer – Iy and the two-way travel-time 

thickness of the layer of interest – � tx. Both constraints are implemented using the 

equality equations in the matrix form explained previously – kmF =∆ . As their values 

are considered to be known and determined by other method, the perturbation model 

values should stay zero. Thus, as: 

[ ]TMLxLLy fttttgggIIIIm 2212121 −∆∆∆∆= LLLLL  

(53) 

(52) 

(54) 
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�my = 0 and �m2L+x  =  0 

therefore: 
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To improve the Newton-Gauss solution, the damping factor �  should be 

implemented into the optimization. If the damping factor is zero, it is clear from equation 

50 that Marquardt-Levenberg solution becomes Newton-Gauss solution. However if �  is 

infinity, the Marquardt-Levenberg solution becomes so called the steepest descent 

method (Madsen et al., 2004). Therefore, the Marquardt-Levenberg method is sometimes 

called hybrid method.  

Because the steepest descent method gives the better estimation of optimization 

solution, if the initial model is far from the minimum, and as the Gauss-Newton solution 

gives much faster convergence if the initial model is close to the minimum, the �  factor 

should be adopted accordingly (Marquardt, 1963). 

  

3.5 Non-linear inversion using random sampling  

 

Monte Carlo methods are used to find mathematical solutions of the problems 

that cannot be easily found by the analytical or other numerical methods. The 

implementation of Monte Carlo method is especially desired when the space dimensions 

of the problem increases. The Monte Carlo method in solving the seismic inversion 

(56) 

(55) 
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problems was previously introduced by Keilis-Borok and Yanovskaya (1967) and Press 

(1968, 1971). 

Here, the Monte Carlo method helps in finding model parameters that 

corresponds to the global rather then local minimum of the objective function – in this 

case, a sum of the least-squares between two traces. In other words, if the initial model of 

the inversion algorithm is uncertain and unpredictable but the probability density function 

of the model parameters could be estimated or reliably assumed, the global minimum of 

the inversion algorithm could be found by Monte Carlo random sampling. 

Before explaining the Monte Carlo random sampling technique, probability 

density and cumulative distribution functions must be defined. Any random variable x 

has a probability density function f(x) so that f(x)dx represents the probability that the 

random variable x has a value between x and x+dx. Consequently:  

1)( =∫
+∞

∞−
dxxf , and 0)( ≥dxxf  

If the probability density function is f(x) and the corresponding cumulative 

density function is F(x), then: 

∫ ∞−
=

x
dxxfxF )()(  

Now, to sample model space from a given probability density function, there are 

a couple of different methods to be used. Here, the inverse transform method is used 

(Von Neumann, 1947). It is sometimes called “Golden Role for Sampling”. To 

implement this technique of the random sampling, three steps are needed: 

1) Sample a number � from a random number generator creating the 

uniformly independent values on [0,1] interval.  

(57) 

(58) 
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ξ

x xx

2) Equate � with the cumulative distribution function: F(x) = �. 
3) Invert the cumulative distribution function and solve for x: x = F-1(�). 
The x value determined in such a way represents a sample of the random variable 

being consistent with its probability density function f(x). This inversion procedure is not 

always feasible. However in the case where the uniform probability density function is 

used, it is possible. 

Figure 10:  A uniform probability density function f(x) and its cumulative distribution 
function F(x) (Wikipedia, 2006). 

 

The uniform probability density function f(x) on the interval (a,b), and its 

cumulative distribution function  F(x) are as follows (Figure 10): 

 

 

  

Thus, to uniformly sample the random variable x (Figure 10):  

ξ)( abax −+=  

where � is created by a random number generator uniformly within the interval [0,1]. 

(59) 

(60) 

dn/
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4. Non-linear inversion algorithm flow 

 

The Monte Carlo inversion algorithm is written using a structural programming 

style. It includes all three basic structures – sequence, selection, and repetition (Deitel and 

Deitel, 2005). The flow consists of a five main stages, combined into these three 

structures: 

1) Input 

a. Input the following data into algorithm: 

i. The window of seismic data, including the time gross thickness 

determined by the spectral inversion. The window should be 

big enough and tapered to avoid the edge affects in the 

inversion.  

ii.  Estimated or assumed probability density functions for the 

model parameters and the number of layers (type of probability 

density function, mean, and standard deviation). Here, uniform 

probability function is used, as it is considered to be the least 

biased. 

iii.  Time thickness from the spectral inversion (� tx). 

iv. Starting acoustic impedance of a layer (Iy), which is considered 

to be constant in the area, estimated from well log data. 

v. Number of trials and iterations (T and J). 

vi. Clean sand and shale acoustic impedances (Iss and Ish). 
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2) Random sampling 

a. Randomly sample the number of layers from given input. 

b. Randomly sample the initial model m’ from the given probability 

density function (T times).  

3) Iterations (Figure 11) 

a. For a given number of layers and initial model and input data (J 

times): 

i. Determine Jacobian, and calculate the rank of Jacobian. If rank 

is less then 3L-1, this trial is ill-posed; thus, go to the step 2. 

ii.  Constrain � tx and Iy using Lagrange multiplers in to Marquardt-

Levenberg method and calculate the perturbation �m. 

iii.  Perturb the initial model by  �mlin. 

iv.  Compare actual data with the predicted data. If the sum of the 

squares errors has satisfactory value or if it is the last iteration 

(Jth), save the model parameters and Lagrange multipliers 

values only if the error is the smallest so far with respect to the 

number of layers and go to the next trial (step 2). Otherwise, go 

back to the next iteration with the initial mode mlin. 

4) The number of degrees of freedom 

a. Determine the minimum set of parameters to be used based on 

function Iaverage = f (L). If Iaverage of the layer of interest become stable 

increasing L, the degrees of freedom are sufficiently high to determine 

the net-to-gross ratio of the layer of interest.  
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5) Output 

a. Determine a time net-to-gross ratio using the estimated model 

parameters (starting acoustic impedance (Ix) and gradient of the layer 

of interest (gx)), together with the given clean sand (Iss) and shale (Ish) 

acoustic impedance values, using both ray and effective medium 

theory. 

 The algorithm for Monte Carlo inversion was written in MATLAB and C 

programming language. The C code was compiled in a form of dynamic link libraries 

(DLL), allowing interfacing C functions to MATLAB.  

Figure 11: Non-linear inversion - iterative procedure. 

 

 

 

Damped least-squares solution: minimize  (�d – J�m)2 

with linear equality constraints F�m=h 

Linear model parameter estimation: 
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5. Wedge models  

 

To examine how different noise scale with variant travel-time thickness affects 

the results of the developed algorithm, wedge models are used; geologically, the wedge 

models are actually pinch-out models. In addition, the wedge models are also used to 

investigate the effects of the inaccurate constrained values of travel-time thickness and 

starting acoustic impedance.  

To get synthetic data for which the model parameters are going to be estimated, 

the convolution forward modeling is applied on the actual parameterization of the 

inversion algorithm, and only a three-layer model is assumed.  

 

5.1 The choice of the model parameter values 

 

All parameters except the travel-time thickness of the mid layer (reservoir) are 

assumed to be constant in the models. In addition, the values for the acoustic impedances 

of clean sand and shale to be used to calculate net-to-gross ratio using the equation 26 

and 28 are considered to satisfy Gardner equation, that is, the empirical chart (Figure 12). 

Using the chart, the acoustic impedance of the clean sand (Iss) is greater of the acoustic 

impedance of the clean shale (Ish) ; that is: 

)]/([10  5.5 and )]/([10  5.7 2626 smkgIsmkgI shss ==  

The model parameters used in the inversion are determined arbitrarily. However 

the values for the starting acoustic impedances for all three layers (I1, I2, I3) are defined to 

(61) 
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be the values between the clean sand and clean shale values, as all three layers are 

considered to be the mixtures of the sand and shale. Furthermore, the starting acoustic 

impedances of the reservoir (layer 2) are greater then the starting acoustic impedance of 

the underlaying and overlaying layers (layer 1 and 3) in the model (Figure 13), assuming 

that the reservoir rock contains the higher percentage of the sand relative to the 

overlaying and underlaying layers. The gradients values (g1,g2, and g3) in the model are 

taken to be arbitrary, except that they are positive, because in most cases in practice, 

acoustic impedance increase with time/depth. 

Figure 12: P-wave velocity and density relationships 
 for different lithology (Gardner et al., 1974).  

 

Having defined model values, the four wedge models are examined:  

1) the model being noise-free 

2) the model with 5% noise 
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3) the model with 10% noise 

4) the model with 20% noise 

 

Figure 13: The parameter values used in the synthetic wedge models.  

First, noise is considered to be random and with the uniform distribution. The 

maximum amplitude of the random noise is calculated with respect to the signal. One 

hundred percent of the signal is assumed to be the sum of the absolute values of the 

maximum and minimum amplitudes of the noise-free data (Figure 14). Because of the 

tuning effect, these extreme values vary with the thickness. However, the hundred 

percent of the signal in the algorithm is constant regardless the thickness and corresponds 

to the response of the model in which the layer thickness is above the tuning travel-time 

thickness, that is, above the half of the period of the dominant frequency (Figure 14).  

I2 = 7 106 (SI) �
t2 = 16, 8, 4, …, 1/16 ms

�
t1 = 24 ms�

t = 80 ms

For Isand=7.500 and Ishale= 5.500

I1 = I3 = 6 106 (SI)

g3 = 0.01

g2 = 0.02

g1 = 0.01

Time in 
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Acoustic 
impedance
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Figure 14: Definition of the noise added to the synthetic data. 

 

Having defined the signal and noise in the previous way, the data with 5% noise, 

for example, are the data with a random uniform noise having maximum (minimum) 

amplitude of 2.5% (-2.5%) of the signal. 

Second, the wedge models response is determined in discrete values of thickness, 

so that the algorithm has tested thickness above (16 and 8 ms), as well as below (4 ms, 2 

ms, 1 ms, ½ ms, 1/4 ms, 1/8 ms, and 1/16 ms) the one-way travel-time tuning thickness. 

The two-way travel-time tuning thickness for Ricker wavelet, � t2t, has been determined 

by the following equation (Chung and Lawton, 1995): 

0
2 2

6

f
t t π

=∆  

where f0 is the dominant frequency of Ricker’s wavelet. Because the dominant frequency 

of Ricker’s wavelet in the synthetic case is considered to be equal to the usual frequency 

content of the seismic exploration data of 30 Hz, the two-way travel-time separation 

between the main and side lobe in the case of Ricker wavelet is the following: 

sst t 013.0
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Therefore, the one-way travel-time tuning thickness is 6.5 ms.  

The algorithm used in the wedge models has only 2000 trials of Monte Carlo 

random sampling. The standard deviation of the sampled uniform probability density 

function is assumed to be 10 % of the true value of the model parameters. Each trial, that 

is, an initial model sampled from the uniform probability density function, has gone 

through sixty iteration of model perturbation to converge towards the neighboring 

minimum. To create the accurate model data for the one-way travel-time thickness below 

the tuning effect in a given sampling rate, first the resampling is performed according to 

the gross thickness, assumed to be determined by spectral inversion. After the resampling 

the data are resampled back into the original sampling rate. Moreover, during the 

inversion procedure, that is, perturbation of the model, the resampling has been again 

applied and resampled back to compare with the response of the model. This approach 

thus consumes lots of time, especially if the gross/net thickness is very small. 

 

5.2 The non-linear inversion results in noise-free environment 

 

The first wedge model is in noise-free environment (Figure 15). Because there is 

no noise in the data, the solution of the inversion is deterministic. Therefore, the solution 

of the inversion gives only one result – the estimated “travel-time” net-to-gross ratio 

based on the ray theory.  
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True “travel-time” Net/Gross: 

0.7850 0.7650 0.7550      0.7525 0.7512 0.7506 0.7503 0.7502 0.7501

Estimated  “travel-time” Net/Gross: 

0.7850 0.7650 0.7550      0.7525 0.7512 0.7506 0.7503 0.7501 5.214*

16 ms 8 ms 1 ms 1/16 ms

*The number is due to the relatively small number of trials. 

-Using 5000, estimated Net/Gross is 0.7501

4 ms 2 ms 1/2 ms 1/4ms 1/8ms

6.5 ms

tuning thickness

 
Figure 15: The noise-free wedge model and the inversion results. 

 

As it was previously stated above, the non-linear inversion algorithm uses 2000 

different initial models to estimate the model parameters, according to the defined 

probability density functions of the model parameters. Thus, assuming that the gross 

travel-time thickness of the mid layer is known as well as starting acoustic impedance of 

the overlaying layer, the estimated travel-time net-to-gross ratios of the wedge model 

exactly correspond to the true travel-time net-to-gross ratios, that is, the travel-time net-

to-gross ratios calculated using the parameters that corresponds to the created synthetic 

data. However, the estimated net-to-gross for the 1/16-ms one-way travel-time thickness 

showed an unfeasible result – 5.214. Increasing the number of trials to 5000, the exact 

solution is achieved, suggesting that the previous solution of the inversion actually 

converged to the local minimum. 
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5.3 The non-linear inversion results in noisy environment 

 

Although having the same maximum amplitude, the different random noise added 

into the data gives the different solution of the inversion. Therefore, 200 different random 

noise sequences (Figure 14) are examined for the same synthetic data corresponding to 

each travel-time thickness in the wedge model. 

The inversion results of the wedge models data that has the added random noise 

are presented in the statistical form: a histogram with its mean and standard deviation 

values of the 200 estimated “travel-time” net-to-gross ratios. Thus, each of these 

estimated ratios corresponds to the different random noise sequence. Figure 16 shows one 

of the statistical solutions of the inversion. In addition, only feasible results are included 

into the histogram; in other words, only the estimated travel-time net-to-gross ratios 

between 0 and 1. 

Figure 16: The inversion results in the form of histogram (200 solutions). 
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Again, the three levels of the noise are examined by the inversion algorithm: 5% 

(Figure 17a), 10% (Figure 17b), and 20 % (Figure 17c). Some inversion results are 

consistent with the expectation: for each case, the smaller the level of the noise in the 

model data, the smaller the standard deviation of the solution histogram. 

However, one would expect that for each case, the smaller the thickness of the 

mid layer (reservoir), the bigger the standard deviation of the solution histogram 

becomes, as the destructive interference of the main and side lobes of the wavelets from 

the reflections. This behavior of the solutions is not always true: when the travel-time 

thickness of the reservoir is close to the tuning thickness (6.5 ms), the inversion algorithm 

gives the solution with smaller standard deviation than the expected. This relation 

between solutions is due to the constructive interference between the main and side lobe, 

making the signal stronger.  

16 ms 8 ms 1 ms 1/16 ms4 ms 2 ms 1/2 ms 1/4ms 1/8ms

True “travel-time” Net/Gross: 

0.7850 0.7650 0.7550      0.7525 0.7512 0.7506

Estimated “travel-time” Net/Gross (µ – mean ; � – standard deviation) : 
µ 0.778 0.749          0.743 0.802 0.803 0.799� 0.078 0.088          0.068 0.077 0.079 0.121

Note: only reasonable results are included, that is, from 0 to 1.

 
(a) 
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16 ms 8 ms 1 ms 1/16 ms4 ms 2 ms 1/2 ms 1/4ms 1/8ms

True “travel-time” Net/Gross: 

0.7850 0.7650 0.7550      0.7525 0.7512 0.7506

Estimated “travel-time” Net/Gross (µ – mean ; � – standard deviation) : 
µ 0.765 0.690          0.746 0.824 0.788 0.687� 0.124 0.143          0.104 0.108 0.159 0.238

Note: only reasonable results are included, that is, from 0 to 1.
 

(b) 

16 ms 8 ms 1 ms 1/16 ms4 ms 2 ms 1/2 ms 1/4ms 1/8ms

True “travel-time” Net/Gross: 

0.7850 0.7650 0.7550      0.7525 0.7512 0.7506

Estimated “travel-time” Net/Gross (µ – mean ; � – standard deviation) : 
µ 0.665 0.612          0.700 0.701 0.658 0.474� 0.214 0.198          0.165 0.242 0.259 0.371

Note: only reasonable results are included, that is, from 0 to 1
 

(c) 
Figure 17: The wedge models with (a) 5%, 

(b) 10%, and (c) 20 % of noise and the inversion results.  
 

Similar conclusions can be made regarding the mean of the histograms: the 

smaller the level of the noise in the model data, the smaller the difference between true 

travel-time net-to-gross and the mean of the solutions. Likewise, the mean estimated for 
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the region of the tuning thickness is sometimes much closer to the true value then the 

mean estimated for the region of the thicker thickness. 

 

5.4 Inaccurate constraints  

 
When the constraints are used in the inversion process, one question naturally 

arises – What are the effects on the inversion results if the used constraints are 

inaccurate? In the wedge-model synthetic case, two parameters are constrained by the 

non-linear inversion algorithm – starting acoustic impedance of the underlying layer, and 

travel-time thickness of the mid layer. Previously, the inversion of the wedge-models data 

has been performed assuming that the constraints are accurate.  

Before examining the effects of the inaccurate constraints, it is important to 

analyze the method used to constraint the data. Here, the method of Lagrange multipliers 

is used, whose mathematical background is explained in Section 3.4 (Non-linear 

inversion using constraints). In the method, the solution of the non-linear inversion 

problem corresponds to the optimization-function minimum satisfying the set of the 

equality equations ( kFm = ). Each of the equality equations used in the optimization 

procedure is associated with the Lagrange multiplier (�). The Lagrange multiplier is 

crucial parameter in terms of understanding the effects of the constraint on the solution of 

the inversion problem. 

Implementing the previous discussion in the wedge model case, the starting 

acoustic impedance of the underlying layer and the travel-time thickness of the mid layer 

are constrained using accurate and inaccurate values to examine this phenomenon. 
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5.5 Inaccurate constraint – time-travel thickness 

 
To examine the effects of inaccurate travel-time thickness values, which are 

constrained within the developed algorithm, on the inversion results, the data from the 

previous wedge models are used; thus, the model parameters values used in the modeling 

algorithm are the same as in the previous wedge model examples (Section 5.1: The 

choice of the model parameter values). However the data of only one thickness are 

investigated; in this case (Figure 18), the data are created modeling the 1-ms travel-time 

thickness. Thus, the synthetic trace corresponding to the 1-ms travel-time thickness in the 

wedge model are inverted using the inaccurate constrained thickness: 16, 8, 4, 2, 1/2, 1/4, 

1/8 and 1/16 ms. The net-to-gross ratios applying both theories – ray and effective 

medium – are estimated as well as Lagrange multipliers of the corresponding constraint 

equality equation that involves one accurate and several inaccurate travel-time thickness. 

Figure 18: Inversion results using the inaccurate constraint – travel-time thickness. 

 

16 ms 8 ms 1 ms 1/16 ms4 ms 2 ms 1/2 ms 1/4ms 1/8ms

True Net/Gross: EMT: 0.774
RT: 0.751

Estimated Net/Gross: 
EMT: 0.508   0.317  0.422   0.533 0.774 >1 (4.8)  >1(5.3) >1(31)  >1(73)
RT: 0.475 0.288 0.390      0.500 0.751 >1 (6.3)  >1(7.1)   >1(52)  >1(124)

Lagrange multiplier value:
10-6 10-6 10-11 10-13 10-23 10-8 10-8 10-6           10-6 
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 First, regarding the estimated net-to-gross ratios, intuitively, the bigger the 

discrepancy between the accurate and used thickness, the biggest the error between the 

true and estimated net-to-gross ratio. Second, the Lagrange multiplier value associated 

with the accurate travel-time thickness is closest to zero (10-23) comparing with those of 

the inaccurate travel-time thickness.  

This relation between the Lagrange multipliers of accurate and inaccurate 

constraint equality equations suggests, keeping in mind the previous discussion about the 

physical meaning of the multipliers (Section 3.4 Non-linear inversion including 

constraints), that the travel-time thickness does not have to be constrained to have the 

unique solution. Because the travel-time thickness is actually estimated using the same 

set of data by spectral inversion and thus does not represent a priori information, it is not 

surprise that this parameter does not have to be constrained in the inversion algorithm.  

However, in the real example, the spectral inversion determined travel-time 

thickness is going to be constrained and examined, as it is a mean of 1) biasing the 

inversion in directions found to be desirable for interpretation purposes, 2) reducing the 

dimension of initial-model space, and 3) determining the resample rate in the inversion 

algorithm. 

In addition, the net-to-gross ratios estimated are plotted as a function of the 

constrained travel-time thickness (Figure 19). Clearly, the relations between these two 

quantities are non-linear. 
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Figure 19: The net-to-gross ratios vs. the constrained travel-time thickness. 

 

5.6 Inaccurate constraint - starting acoustic impedance 

 
The same synthetic data are used to examine the effects of the inaccurately 

constrained starting acoustic impedance of the overlying layer. However, in this case, the 

assumption is that the travel-time thickness is known correctly, whereas the starting 

acoustic impedance is constrained using one accurate and several inaccurate values 

within the range from 4 to 8 10-6 SI. The net-to-gross ratios as well as Lagrange 

multipliers values corresponding to the given constraints are estimated and calculated 

(Figure 20), applying both ray and effective medium theories.  
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Figure 20: The inversion results using inaccurate constraint – starting acoustic 
impedance. 

 

Again, here the bigger the error of constrained value, the bigger the error in 

estimated results. However, here in a case of ray theory bound, the relation between the 

constrained value and estimated net-to-gross ratio are linearly dependent, whereas the 

relation, in a case of effective medium theory bound, is still non-linear but very close to 

linear (Figure 21).  

Speaking of the estimated Lagrange multipliers, regardless of the constrained 

value, whether it is accurate (6.5) or not, their value are the same! These constant 

multipliers suggest that all constraints have the equal “force” to change the minimum of 

the objective function. In addition, the solution of the inversion is non-unique, as the 

objective function does not have a single global miminum. Therefore, such a parameter 

has to be constrained with a priori information to have a unique solution. Thus, in the 

Estimated N/G:
EMT: -0.147     0.188    0.492         0.774 1.038   1.289   1.528 
RT: -0.124            0.168         0.459    0.751 1.043          1.335         1.627

Lagrange multiplier value:
10-23 10-23 10-23 10-23                 10-22 10-23 10-22

1 ms

True N/G
EMT: 0.774
RT: 0.751

I1
4.5  5.0 Ishale=5.5     I1=6.0         6.5              7.0        Isand= 7.5
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real example (chapter 4. Real example), a starting acoustic impedance of one of the layers 

is constrained using the value determined from the different technique – well logging. 

 

Figure 21: The net-to-gross ratio vs. constrained starting acoustic impedance. 
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6. Synthetic example – Multi-layer case 

 

In the previous example, wedge models, there were three assumptions limiting the 

implementation of such an algorithm into the real case: 

1) The number of layers is known (though it could be estimated from 

spectral inversion). 

2) Only three layers are used. 

3) The synthetic data were generated using the actual parameterization 

(unrealistic impedance profile). 

Figure 22: Generating synthetic data to be used in the inversion. 

Therefore, another synthetic has been investigated. In the synthetic case, all three 

previous assumptions are excluded: that is, the number of layers is considered to be 

unknown and arbitrary, and the data are more realistic by adding the uniform random 

R.C.

*

a)

c)b)
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function on the acoustic impedance profile before creating the reflection coefficient for 

the synthetic data: on Figure 22, it is shown how the synthetic data has been created: 

First, the arbitrary acoustic impedance profile has been created (Figure 22a); then, the 

reflection coefficient profile is derived form the acoustic impedance profile, and finally, 

by convolution of Ricker wavelet and the reflection coefficient profile (Figure 22b), the 

data have been generated (Figure 22c). 

 
Figure 23: Used constraints in the inversion. 

Now, in the inversion procedure, as in the previous synthetic case, two parameters 

have been constrained: a two-way travel-time thickness and starting acoustic impedance 

of one of the layers. The assumption is that the former is known from the spectral 

inversion and the latter is known from the well log interpretation. Their values are 

respectively, 10 [ms] and 1.55 106 [kg/m3 m/s] in this case (Figure 23).  
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Figure 24: Ray theory “travel-time” net-to-gross ratio 

as a function of a number of layers. 

The inversion algorithm has investigated the affect of the different number of 

layers. There is only one deterministic solution of net-to-gross ratio per the corresponding 

number of layers for both theories – ray and effective medium (Figure 24 and 25, 

respectively). These solutions of the inversion correspond to the global minimum solution 

of objective function, that is, the smallest error between the synthetic data and estimated 

data for each number of layers. The values of the objective function with the respect of 

the number of layers used in the inversion are plotted on Figure 26: It is clear that the 

more degrees of freedom used in the inversion, the less error between the actual and 

predicted data. In addition, the values of the Lagrange multipliers associated with the 

used constraints are shown on Figure 27. 

Target 

Estimated 
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Figure 25: Effective medium theory “travel-time” net-to-gross ratio 

as a function of a number of layers. 

Overall, 5·107 trials were used to investigate different initial models with different 

number of layers, assuming that the values are within the two standard deviations from 

the mean of the uniform distribution, which is the input for the random sampling. 

 
Figure 26: Objective function as a function of 

a number of layers. 

Target 

Estimated 
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According to the values of net-to-gross ratio with the respect to the number of 

layers for both theories, ray and effective medium (Figure 24 and 25, respectively), the 

following can be concluded: by increasing the number of layers and thus degrees of 

freedom, the estimated net-to-gross ratio approaches to the “true travel-time” net-to-gross 

ratio. In this case the model that has thirteen layers gives the very good estimation of the 

net-to-gross ratio (Figure 34). This behavior actually means that the average of acoustic 

impedance using the thirteen layers are the same as the average of the target model. 

 
Figure 27: Lagrange multipliers of two constrained parameters 

 as a function of a number of  layers. 

This conclusion has been already seen in the inverse problems: the higher the 

degrees of freedom, the better match between the actual and estimated model. For 

example, it can be seen in designing matching filter in so-called Wiener least-square 

filtering. The longer the length of the filter, the better matching between the input and 

desired output (Robinson and Treitel, 2001). 
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On the other hand, it is interesting to mention that the best match for the 

interpretation of the gradients gives the model that uses the only eight layers (Figure 29). 

According to the results, objective function (Figure 26) and Lagrange multipliers that 

correspond to the constraints (Figure 27) show abrupt drop in their value, at that point 

where the solution should be used for geological interpretation. 

The estimated models that correspond to the global minima for each of the 

number of layers are show bellow (Figure 28-34). 

 
Figure 28: Inversion solution using seven layers. 

 

Target 

Estimated 
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Figure 29: Inversion solution using eight layers. 

 

 
Figure 30: Inversion solution using nine layers. 

 

 

 

Target 

Estimated 

Target 

Estimated 
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Figure 31: Inversion solution using ten layers. 

 

 
Figure 32: Inversion solution using eleven layers. 

 

 

 

Target 

Estimated 

Target 

Estimated 
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Figure 33: Inversion solution using twelve layers. 

 

 
Figure 34: Inversion solution using thirteen layers. 

 

 

 

Target 

Estimated 

Target 

Estimated 
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7. Real example – South Timbalier field 

 

The South Timbalier field is located south from Louisiana in the Gulf of Mexico 

(Figure 35). The available data from the field in the research are the post-migration stack 

volume as well as geophysical well log data. Although there is available spectral 

inversion volume for the area, it has to be discarded from the research as it was derived 

using inaccurate synthetic ties from the previous study. Therefore, the algorithm is going 

to use the constrained travel-time thickness from well logs rather then from the spectral 

inversion results to estimate the feasibility of the developed algorithm. 

Figure 35: South Timbalier field location (Stude, 1978). 

The geological environment of South Timbalier field is typical for the Gulf of 

Mexico: sedimentary basins with various salt domes and structures (Stude, 1978).  

Because only one well at the location has the acoustic log data acquired, allowing 

the accurate estimation of the seismic velocity of the formations, the research was limited 

only to that well (Figure 36). In addition, because the density logs were not available in 
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the well, the acoustic impedance was not directly calculated but estimated from the given 

velocity log. The estimation from the velocity should give sufficient accuracy for the 

application, assuming the constant density for the given data window. 

Figure 36: Location of the acquired acoustic 
log on the migrated seismic section – Inline 607. 

As it could be seen on Figure 36, the well 20 is drilled through a sedimentary 

basin; thus, by identifying the shale-sand sequence on the log, it allows us to implement 

the developed algorithm for a given sequence. Such a sequence has been identified 

(Figure 37 – red dashed arrow). According to log data (Figure 37), higher impedance 

might suggest that sequence should have more sand content then shale. Within the 

Well-20 
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sequence, the target layer has been defined (Figure 37 – black solid arrow). The target 

layer is very thin; the two-way travel time thickness of the layer is 8 ms. 

Figure 37: Well log data and synthetic tie in the well-20. 

To efficiently apply the developed algorithm, it is crucial to have a good 

correlation between the acoustic impedance profile and some net-to-gross ratio indicator, 

such as gamma-ray or electrical self-potential (SP) well logs in the shale-sand sequence 

of the interest. For the given well, only SP log is available, and there is a correlation 

between the acoustic impedance (track 2) and self-potential log (track 1) in the area of 

interest, making the algorithm applicable (Figure 37).  

To test the feasibility and application of the research algorithm, the results of net-

to-gross ratio derived from the trace located nearest to the well are compared with the 
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results of net-to-gross ratio derived directly from the well log data. As a matter of fact, 

the constrained data, that is, starting acoustic impedance of one of the layers and travel-

time thickness of the layer of interest, are used from the same well log data.  

 

7.1 Estimating net-to-gross from the well logs 

 
As it was stated before, the electric self-potential (SP) log can be used to 

determine a net-to-gross ratio of a layer. The net-to-gross ratio is defined by the 

following equation:  

shss

shss
z SSPSSP

SSPSP

h

h
GrossNet

−
−==/  

where SP is electrical self-potential of the layer of interest, SSPss is a electrical self-

potential of clean send, and SSPsh is a electrical self-potential of clean shale. Using the 

previous equation, the target layer in the research has the net-to-gross ratio of 0.85 

(Figure 37 – black arrow).  Because electric self-potential is measured in depth, such a 

determination of the net-to-gross should represent “true” net-to-gross ratio. 

 In addition to estimating net-to-gross using the SP curve, the acoustic impedance 

can be used to estimate travel-time net-to-gross ratio (Section 2.4 Calculating reservoir 

travel-time net-to-gross ratio). Therefore, from equations 26 and 28, using ray and 

effective medium theory respectively: 
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the calculated net-to-gross for the target layer is 0.87 and 0.89, respectively, which is 

very close to the “true”, derived from SP curve – 0.85. 

(64) 
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7.2 Estimating net-to-gross from the non-linear seismic inversion 

 
Before the data are included into the developed algorithm to estimate travel-time 

net-to-gross ratio, they have to be prepared with the following steps: 

1) Perform the synthetic ties on the data in order to scale the amplitudes of 

the trace to their absolute values. Here, STRATA (Hampson-Russell) 

software has been used for the step. In this case, the correlation between 

the synthetic and original trace has achieved the value of 0.82 (Figure 

38a).  

2) Determine the window of the trace that includes the layer of interest and 

the anchor layer with the known value of starting acoustic impedance 

throughout the area of interest. The good choice for the anchor layer 

could be some shale sequence with a constant value throughout the 

field.  It should be kept in mind that the layers should not be affected by 

the edge effect, that is, the length of the used window should be 

sufficiently large (Figure 38b). 

3)  Apply the tapers on the edges of the trace window so that the edge 

effects are reduced (Figure 38c). 

4) Determine the values of the data to be constrained, that is, starting 

acoustic impedance of the anchor layer and two-way travel-time 

thickness of the layer of interest (Figure 38d).  
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5) Determine the acoustic impedance of the clean sand and clean shale. 

These should be the minimum and maximum acoustic impedance 

values in the shale and sand sequences, respectively for this case. Using 

the well logs, the determined values for the clean shale and the clean 

sand are 1.6 and 5.4 106 SI units, respectively. 

Constrained time 
thickness –

�
t = 8 ms

Constrained –I = 3.5 (10^6 SI)

a)

b) c)

d)

d)

 
Figure 38: Data preparation. 

Now that data has been prepared the algorithm can be used to estimate the 

acoustic impedance profile of the layer of interest and thus “travel-time” net-to-gross 

ratio, assuming different number of layers in the model. 

As it was previously stated in the multi-layer synthetic case, random sampling 

technique has been used to investigate different initial models. The number of trials that 
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has been used here is about 40 million, roughly 5 million per one thickness. Therefore, 

for each thickness there is one global minimum solution, which has been used for 

determining travel-time net-to-gross ratio.  

Figure 39: Objective function as a function of a number of layers. 

Here the observations are the same as in the synthetic multi-layer case – First, the 

more layers in the model, that is, the higher degrees of freedom in the inversion, the 

smaller the objective function (Figure 39). Second, the higher the degrees of freedom, the 

more closely are the estimated net-to-gross ratio from seismic data to the estimated net-

to-gross ratio from the well log data (Figure 40 and 41). In other words, the estimated 

acoustic impedance average of the layer of interest is closer to the average of acoustic 

impedance determined from the well log data. However, what has been observed is that 

with the higher degrees of freedom, the calculated Jacobian is much often singular for a 

given initial model; thus, it is more difficult to achieve well-posed solution. Moreover, 
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the computational time increases by increasing the number of layers, that is, model vector 

dimension.  

Figure 40: Ray theory travel-time net-to-gross ratio 
as a function of a number of layers. 

In addition, the interesting question stayed unsolved - could we have known at the 

beginning what is the sufficiently number of layers to be used in the inversion?  

First, the answer to the previous question would have given the spectral inversion 

technique, but as it is not accurate, we could not use it. Second, we can always do the 

same scanning through different number of layers and see when the value of the net-to-

gross ratio (that is, acoustic impedance average) of the layer of interest is going to be 

stable, and than use the result from the highest degrees of freedom. This approach is 

feasible only if the computational time is not the issue. 
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Figure 41: Effective medium theory travel-time net-to-gross ratio 
as a function of a number of layers. 

 The results of the global minimum solution for even number of layers are shown 

below (Figure 42, 43, 44, 45, and 46). The odd numbers of layers are skipped just for 

simplicity. It should be stated that with the high degrees of freedom the estimated 

acoustic impedance gradients of the layers are not interpretable. However, the general 

trend of the estimated acoustic impedance gradients by the inversion has good match with 

the regional trend of the well-measured acoustic impedance gradients (Figure 46). 
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Figure 42: Inversion solution using three layers. 

 

Figure 43: Inversion solution using five layers. 

 

Well-log a. 
impedance 

Inversion a. 
impedance 

Inversion a. 
impedance 
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Figure 44: Inversion solution using seven layers. 

 

Figure 45: Inversion solution using nine layers. 

 

Inversion a. 
impedance 

Inversion a. 
impedance 
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Figure 46: Inversion solution using eleven layers. 

 

 

 

 

 

Inversion a. 
impedance 
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8. Conclusions 

 

Constraining a priori information in the inversion algorithm clearly helped in 

getting the unique solution of the seismic inversion problem, that is, achieving the global 

minimum of objective function. It was found that one starting acoustic impedance in the 

model had to be constrained in order to achieve global minimum of the objective 

function. This conclusion was suggested using the synthetic wedge model (Section 5.4 – 

Inaccurate constraints), where all constraint values, whether accurate or inaccurate, had 

the same very weak magnitude of “force”, that is, Lagrange multiplier value, ~10-23, 

making solution non-unique. 

However, travel-time thickness of the layer of interest does not have to be 

constrained to have a non-unique solution, but it is a mean for biasing the inversion in 

directions found to be desirable for interpretation purposes. It was found in the same 

synthetic wedge model that when the accurate thickness was constrained, a unique 

minimum value of Lagrange multiplier was achieved ~10-23 magnitude comparing to the 

other inaccurate values, making solution unique. 

Furthermore, a random sampling technique, often called Monte Carlo sampling, 

provides the way of scanning complete model space for the sufficiently good initial 

model.  Each of the solution for each of the initial model has been compared to get one 

with the minimum error, thus, avoiding the local minimum, to be the solution of the 

seismic inversion. In the real example at South Timbalier field, it was shown that twenty 

million trials were sufficient to achieve satisfactory results. Further investigation could be 
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done to computationally determine optimal number of trials that should be used in an 

inversion process. 

The number of layers is crucial in the efficiency of the developed algorithm to get 

accurate and/or stable result. The more number of layers involved in the inversion, that is, 

the higher degrees of freedom in the inversion used in the inversion, the closer estimated 

net-to-gross ratio to the actual net-to-gross ratio. On the other hand, the higher degrees of 

freedom used in the inversion, the less stable is result, that is, the more difficult is to 

achieve a non-singular Jacobian in the inversion, and the longer computational time of 

the inversion. Here, the well-posed solutions, that is, the solutions with the non-singular 

Jacobian, were achieved with the models with the number of layers between three and 

twelve.  The least-square error with three-layer model global solution was ~2.1, whereas 

with twelve-layer model global solution was ~0.15, which is improvement in matching 

actual with predicted data fourteen times. 

Travel-time thickness net-to-gross ratio can be good indicator of the quality of 

reservoir. When the correlation between the acoustic impedance and SP log has been 

achieved, the estimated net-to-gross ratio gave very good estimation of the layer of 

interest, even though the layer is below “conventional seismic resolution”, quarter of the 

dominant wavelength. For the layer of interest in the research, using SP, the net-to-gross 

ratio was estimated to be 0.85, whereas using the seismic inversion, the “travel-time” net-

to-gross was estimated to be 0.87 and 0.89 for ray and effective medium theories, 

respectively. 

However, the estimated gradients of the layers in general should not be used in 

the interpretation, but on the other hand, the general trend of the estimated gradients has a 
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very good qualitative match with the actual one, that is, the one directly measured in the 

well.  
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