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Abstract

In this dissertation we develop a seismic re�ection inversion procedure using a ba-

sis pursuit technique, that reconstructs the subsurface microstructure from poststack

seismic data. We �rst explain the formula underlying basis pursuit inversion (BPI)

for seismic re�ection, before investigating the formula through the incorporation of a

priori information.

BPI is a type of L1 norm constrained least square solution for inverse problems.

Compared with the other two kinds of constraints (Lp, (p = 0, 2) norm minimiza-

tion), minimal L1 norm constraint is best at recovering an accurate re�ectivity series.

A minimal L0 norm constraint can be obtained by use of a matching pursuit (MP)

method that produces sparse solutions. A minimal L2 norm constraint can be ob-

tained by use of general inversion method that produces smooth solutions. The BPI

technique balances the sparseness and smoothness to achieve a dense spiky solution.

Speci�cally, our BPI incorporates wedge models as the basis instead of any impedance

starting models. The incorporation is achieved by dipole decomposition, which can

decompose any re�ector pair into an odd and even pair. By using the formulism,

BPI recovers the subsurface structure in the form of re�ection coe�cients. Synthetic
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tests show the sensitivity of BPI, even given the inaccuracy of wavelets and the pres-

ence noise contamination. Sparse-spike inversion (SSI) is another minimal L1 norm

constraint least square methods which has been used in industry for decades. A com-

parison between BPI and SSI suggests the improvement of BPI.

We test BPI with several �eld data sets: an improved tie between well-log data

with the inverted data illustrating the superior vertical resolution from BPI; improved

imaging of subtle stratigraphic features with removing the wavelet e�ect; impact on

the 3-D data set interpretation; improved velocity structure. Various data applica-

tions show the industrial potential of BPI to be incorporated .
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Chapter 1

Introduction and Motivation

The basic goal in re�ection seismology is to recover the layered structure of the

surface as a function of depth from observed seismic data. This goal is not easily

attained, for even if the convolutional model is adopted and the earth is assumed

to be made up of plane parallel layers having constant material parameters. The

main di�culty lies in the bandlimited e�ect of seismic data with the resulting loss

of low- and high-frequency information about subsurface structure. The purpose of

this dissertation is to invert a high resolution re�ection coe�cients series from each

poststack seismic trace. Since it is the most widely used, the the convolutional model

is applied here for poststack seismic images permitting each seismic trace s(t) to be

shown in Figure 1.1. This can also expressed as Eq. 1.1:

3



Chapter 1. Introduction and Motivation

Figure 1.1: Seismic trace as convolution of wavelet with re�ectivity

s(t) = w(t) ∗ r(t) + n(t) (1.1)

where w(t) is the seismic wavelet, ∗ is the convolution operation symbol, r(t) is the

unknown re�ectivity series and n(t) is random noise. Mathematically, convolution

can be written as a formula as shown in Eq. 1.2:

s(t) =

∫
w(t− τ)r(τ)dτ + n(t) (1.2)

This model assumes that the earth's structure can be represented adequately by a set

of planar layers of constant impedance. All the re�ectors are generated at the bound-

ary between adjacent layers. For the purpose of this dissertation, We also assume the

wavelet (or an estimate of the wavelet) is known through a constant-phase shift.

It is clear that because of the bandwidth limitation of the wavelet (and data)

and because the data are �nite and inaccurate, there exists an in�nite number of

re�ectivities that �t the data equally well. These possibilities are the source of non-

uniqueness. One re�ectivity should be chosen as the right one using some criteria or

4



Chapter 1. Introduction and Motivation

constraint. So, the right solution should: (1) �t the data;(2) satisfy a given set of

constraints (if available). The �rst issue leads to a least-square solution which is a

common solution of geophysical inversion problems. The second issue represents the

key point to most inverse problems. It is usually put into practice by assuming cer-

tain prior information about the type of solution one is interested in �nding. In other

words, prior information is used to discard implausible models. In this dissertation,

three kinds constraint solutions will be studied and the solution with a minimal L1

norm is shown to be the best for seismic re�ection inversion.

In this dissertation we assume that re�ectivity is a series of spikes. The main

objective of the inversion method is to provide a signi�cant increase in bandwidth

content from bandlimited seismic observations. This is especially important because

the search for subtle hydrocarbon traps has become a major task in today seismic

exploration. Under the assumption of sparseness, the seismic problem involves: (1)

detection of the spikes; and (2) estimation of their amplitudes.

Various methods use di�erent search strategies to locate the spikes and rely on the

optimization of di�erent cost functions to satisfy a probabilistic model for the re�ec-

tivity (?; ?). Other methods proceed to optimize some norm that forces the solution

to be sparse (?; ?; ?; ?; ?; ?). ? address the problem (through the inversion of post-

stack data) using sparse prior information. In their method, numerical instabilities

in the linear least-squares stage are handled by introducing constraints in the spike

locations; for example, two spikes cannot be closer than a predetermined distance.

This precludes the use of the procedure in geologic situations such as layer pinch-outs

5



Chapter 1. Introduction and Motivation

and thin beds. Another di�culty mentioned comes from the fact that the linear stage

may lead to solutions with invalid amplitudes. Hence, the use of constrained linear

optimization is suggested to alleviate this problem, though it is not clearly explained

how these constraints are included from a numerical point of view.

? provide a �rst look at high resolution inversion through a spectral inversion

technique that describes the possibility of resolvable thin layers that are less than

tuning thickness. Further applications of spectral inversion are presented by ? that

yield superior resolution which can help in various ways. The advantages include

being able to pick up more re�ection detail, to perform more accurate interpreta-

tion on seismic volumes obtained by convolving re�ectivity volumes with wavelets of

higher bandwidth than the input data, and to visualize subtle anomalies when some

attributes are run on thin-bed re�ectivity inversion outputs. The theory of spectral

inversion was re�ned by ? in detail that demonstrated its utility by performing layer

thickness determinations on a real seismic survey (without well calibration) to achieve

estimation accuracies of a few milliseconds at time for thicknesses approaching 1/16 of

a wavelength. ? also demonstrated how much more geologically reasonable inverted

re�ectivity images are, from a stratigraphic point of view, than are the seismic sec-

tions from which they are derived. The output of the inversion process can be viewed

as spectrally broadened seismic data, retrieved in the form of broadband re�ectivity

data that can be �ltered back to any bandwidth that �lter panel tests have indicated

adds useful information for interpretation purposes.

In contrast to spectral inversion that is a spectral domain method, basis pursuit

6



Chapter 1. Introduction and Motivation

inversion (BPI) is applied in time domain. The dissertation proposes that BPI yields

stable and valid solutions without the need for explicitly constraining either the loca-

tion, or the amplitudes of the re�ection coe�cients and initial model. Furthermore,

because the proposed trace-by-trace strategy provides good lateral continuity, the use

of additional terms in the cost function is not required.

The proposed methodology in this dissertation allows for any number of spikes to

be easily incorporated into the optimization procedure to further reduce the nonunique-

ness of the solution and to improve its accuracy and consistency.

In Chapter 2, we compare three kinds of Lp, p = 1, 2, 3 norm constraint least-

square solutions, showing that the L1 norm minimization constraint is the best for

seismic re�ectivity inversion. In Chapter 3 a wedge dictionary is introduced which

is shown to have a superior ability to help resolve thin-bed layers. In Chapter 4,

we analyze the sensitivity of BPI regarding kernel matrix, wavelet inaccuracies and

noise using synthetic tests. Chapter 5 presents �eld data applications. We present

our conclusions in Chapter 6.

7



Chapter 2

Inversion Theory

In this chapter, we will discuss the general inversion theory. Three kinds of Lp

norm constraint least-square methods are presented and compared.

2.1 Convolution Model

In this dissertation, the subsurface is considered to have the structure of layer

cake. Each layer consists of uniform properties and each interface between two layers

generates re�ection. Poststack seismic data gives an image of the earth that describes

the spatial distribution of those interfaces. Each trace of poststack seismic image can

be considered as a convolution of a seismic wavelet with the re�ectivity series as was

stated in Eq. 1.1. Mathematically, the convolution operation is integration, as was

shown in Eq. 1.2. Re�ectivity here is considered as a normal incident.

It is known that the convolution integration can be transformed into the multipli-

cation of a re�ectivity vector with a kernel matrix. Figure 2.1 illustrates the simple

8



Chapter 2. Inversion Theory

Figure 2.1: The matrix form of convolution

convolutional operation using matrix multiplication. The kernel matrix is a diagonal

matrix with the wavelet shifting from start to the end. So, the convolution model

can be written as Eq. 2.1.

d = Gm+ n, (2.1)

Where the d represents the seismogram data s(t) in the Eq. 1.1; m represents the r(t)

and G represents the diagonal wavelet matrix. n is assumed to be a random noise,

making the least-square solution possible. The least-square solution minimizes the

means square error between the forward modeling and observed data which su�ers

from the nonuniqueness. To solve the nonuniqueness, a constraint has to be induced

to choose the "right" solution from all the possibilities.

2.2 Lp Norm Constraint

Seismic re�ection inversion commits itself to removing the e�ects of a blurring

kernel-wavelet matrix- on the seismic image. The blurring kernel, known as the

seismic wavelet, contains the e�ects of the source-function. The model ,m, represents

9



Chapter 2. Inversion Theory

Figure 2.2: Re�ectivity can calculated by multiplying inverse wavelet matrix with

seismic trace.

the re�ectivity (as r(t) in Eq. 1.1) and is linearly related to the observed seismic

image trace, d (as s(t) in Eq. 1.1), by the kernel G-diagonal wavelet matrix (as w(t)

in Eq. 1.1). n is taken to be a white Gaussian noise. With a slight abuse of notation,

we will replace the operator, model and data by a matrix and vectors. The re�ection

coe�cients vector m is designed to be sparse; the question is how to �nd these sparse

solution with given (noisy) data. The direct answer would be calculated as shown in

Figure 2.2. The may also be represented as Eq. 2.2.

m = G−1 ∗ d (2.2)

Figure 2.3 shows an example of kernel matrix G that is constructed with a 30 Hz

ricker wavelet shifting from zero to 0.5 s (shown at left) with a direct inverse matrix

calculated (shown at right). To characterize the inverse G matrix, the eigne values of

the inverse G matrix are calculated and plotted from large to small in Figure 2.4. It

may be observed that the �rst three largest eigne values are about 4.5× 1013, much

larger than all the rest. Figure 2.4 (b), the detailed �gure within the dashed red

10
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Figure 2.3: Inverse G matrix

rectangle, demonstrates that the 4th to about 340th eigne values hold the quantity

of about 107. The remaining eigne values have a quantity level of 1. Such a big

di�erence in eigen value means that the inverse G matrix is very ill. An ill-posed

inverse problem usually leads to instable solutions which are very noise sensitive or

possess great nonuniqueness.

Figure 2.4: Eigne value of inverse G

Given the illness of G, the simple least square solutions could (as shown in Eq.

11
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2.2 and Figure 2.2) can have the problems below:

· non-uniqueness;

· unstable;

· lack of resolution;

· inferior denoising capabilities.

Su�ering from above weaknesses, least-square solutions have to be constrained to the

one providing the best �t to reality. Such a constraint is usually described as in Eq.

2.3

min ∥d−Gm∥2 + λJ(m), (2.3)

where J(m) is a λ-weighted global constraint function (?), which contains a priori

information on the model. The constraint term J(m) works from the model; it is usu-

ally a function of model parameters. λ, the trade-o� factor, plays an important role in

the inversion processing that balances the mean square error with a penalty function

to derive the best result. This formulation underlines many least-square inversion

techniques and permits a re�ectivity model (?, ?).

Currently, L0, L1 and L2 norms are three kinds of commonly used constraint

functions. The L2 norm constraint is more widely used in inversions with a target

having a smooth distribution, such as the velocity model, because it has a tendency

to spread the energy. The L1 and L0 norms, on the other hand, preserve sparseness.

Such sparseness-constrained inversion techniques (?,?) can produce successful spikes

train solutions of the inverse problem. In this dissertation, the earth is supposed to

consist of isolated jump discontinuities - a re�ectivity series. I will discuss p = 0,

p = 2 and p = 1, respectively.

12
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p = 0: leads to Matching Pursuit (MP). MP minimizes the number of non-zero

coe�cients by applying a simple recursive rule that selects the best matching atoms

with a greedy search strategy (?). When it is applied in a time-frequency decom-

position with some orthogonal or biorthogonal time-frequency atoms, it becomes a

spectral decomposition. MP can also be adopted in seismic re�ection inversion by

replacing time-frequency atoms by a seismic wavelet, as shown below:

min∥d−Gm∥22 + λ∥m∥0, (2.4)

p = 2: leads to a L2 norm minimization constrained least square solution. When

it is applied in velocity inversion, it becomes tomography. When it is applied in a

seismic re�ection inversion, it becomes similar to a deconvolution, as shown below;

min∥d−Gm∥22 + λ∥m∥2, (2.5)

p = 1: leads to a sparseness-constraint global optimization scheme. There are

di�erent types of algorithms to realize the L1 norm minimization. Each has the same

expression shown below:

min∥d−Gm∥22 + λ∥m∥1, (2.6)

We will compare three di�erent strategies to obtain a re�ectivity series, with em-

phasis on the seismic application and the selection of a re�ection coe�cient vector.

While deconvolution and basis pursuit methods are based on solving a global opti-

mization problem, the MP method uses a local greedy search algorithm (?). ? has

13
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discussed the three kinds of methods, with an application of time frequency decom-

position, in detail. We compare these three kinds of method with applications in

seismic re�ection inversion respectively.

2.3 Basis Pursuit

Original basis pursuit was developed as optimization method. It �nds signal

representations in overcomplete dictionaries by convex optimization. It obtains the

decomposition with a minimal L1 norm of the corresponding coe�cients occurring in

the representation. Because of the non-di�erentiability of the L1 norm, this optimiza-

tion principle leads to decompositions that can have very di�erent properties from

the sparse representation methods; in particular, they can be much sparser. Because

it is based on global optimization, it can stably super-resolve in ways that Matching

Pursuit (MP) cannot.

When the basis pursuit technique is applied in a seismic re�ection inversion, each

seismic image trace (d in Eq. 2.1) is a discrete time signal of length n-time samples,

with a recording sample rate; this may also be viewed as a n-dimension vector. Seis-

mic re�ection inversion can be considered as the reconstruction of this signal with

superpositions of seismic response (G in Eq. 2.1) with speci�c coe�cients�re�ection

coe�cients (m in Eq. 2.1).

14
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2.3.1 Linear Program

The application of BPI in seismic re�ection inversion is to �nd a representation

of the seismic image trace whose coe�cients have a minimal L1 norm. The expression

(shown in Eq. 2.6) only gives some mathematic meaning of BPI that is not explicitly

resolvable. The realization of a solution of the BPI has been described in detail by

?. BPI can be equivalently reformulated as a linear program by making the following

translations:

m = u− v;x =

 u

v

 ;A = (G,−G); b = d; c = λ(1, 1). (2.7)

By these transformations, minimal r can be transformed into minimization of the

new positive variable x, because

∥r∥1 = ∥u− v∥1 ≤ ∥u∥1 + ∥v∥1 = x. (2.8)

The Eq. 2.1 then can be changed into Equation as Ax = b. So the explicitly resolvable

equation can be changed into a constraint optimization problem as

min cTx subject to Ax = b, x ≥ 0 (2.9)

This expression is what Sparse-Spike Inversion (SSI) is solving. Di�erent from SSI,

BPI utilizes a Primal-Dual method. It solves primal, dual and gap equations simul-

taneously.
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2.3.2 Duality Theory

Eq. 2.9 is often called the primal linear program. The primal linear program is

equivalent to the dual linear program:

max bTy subject to ATy + z = c, z ≥ 0, (2.10)

where x is called the primal variable; and y and z are called the dual variables. The

term primal infeasibility refers to the quantity ∥b−Ax∥2; the term dual infeasibility

refers to ∥c − z − ATy∥; the term duality gap refers to the di�erence between the

primal objective and the dual objective: cTx − bTy. BPI solves these equations �

primal, dual and gap equations simultaneously.

A fundamental theorem of linear programming states that (x, y, z) solves the

linear program (Eq. 2.9), if and only if the primal infeasibility, the dual infeasibility

and the duality gap are all zero. Therefore, when (x, y, z) are nearly primal feasible

and nearly dual feasible, the duality gap o�ers a good description about the accuracy

of (x, y, z) as a solution: the smaller the duality gap is, the closer (x, y, z) are to the

optimal solution.

Our approach is based on a primal-dual log-barrier algorithm. In order to reg-

ularize above Eq. 2.9 and 2.10, ? proposed solving the following perturbed Linear

Program:

max cTx+
1

2
∥γx∥2 + 1

2
∥p∥2 subject to Ax+ δy = b, x ≥ 0. (2.11)
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2.3.3 A Primal-Dual log-Barrier LP Algorithm

The main steps of the primal-dual log-barrier algorithm are as follows:

1. Set parameters: the feasibility tolerance FeaTol, the duality gap tolerance

PDGapTol, the two regularization parameters γ and δ .

2. Initialize x > 0, y, z > 0, µ > 0. Set k = 0.

3. Loop

(a) set:

t = c+ γ2x− z − ATy

r = b− Ax− δ2y

v = µe− Zx

D = (X−1Z + γ2I)−1

(2.12)

where X and Z are diagonal matrices composed from x and z; e is a vector of ones;

(b) solve:

(ADAT + δ2I)∆y = r − AD(X−1v − t) (2.13)

for ∆y and set

∆x = DAT∆y +D(X−1v − t),∆z = X−1v −X−1Z∆x; (2.14)
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(c) Calculate the primal and dual step sizes ρp,ρd and update the variables:

ρp = 0.99×max ρ : x+ ρ∆x ≥ 0,

ρd = 0.99×max ρ : z + ρ∆z ≥ 0;

x = x+ ρp∆x,

y = y + ρd∆y,

z = z + ρd∆z,

µ = (1−min(ρp, ρd, 0.99))µ.

(2.15)

4. Terminate if the following three conditions are satis�ed:

(a) Primal infeasibility= ∥r∥2
1+∥x∥2 <FeaTol;

(b) Dual infeasibility= ∥t∥2
1+∥y∥2 <FeaTol;

(c) Duality gap= zT x
1+∥z∥2∥x∥2 <PDGapTol;

For fuller discussions of this and related algorithms, see (?, ?, ?, ?,?). Note that

when δ > 0, the central Eq. 2.13 may be written as the least-square problem:

min
∆y

∥∥∥∥∥∥∥
 D1/2AT

δI

∆y −

 D1/2(t−X−1v)

r/δ


∥∥∥∥∥∥∥
2

, (2.16)

which may be better suited to a numerical solution if δ is not too small. While

in principle we could have based our approach on other interior-point schemes, the

primal-dual approach naturally incorporates several features we found useful. First,
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the iterates x, y, z do not have to be feasible. We are only able to choose a starting

point that is nearly feasible and remain nearly feasible throughout the sequence of

iterations. Second, after both primal and dual feasibility have been nearly achieved, it

is easy to check for closeness to the solution value; at the limiting solution cTx∗ = bTy∗

and the duality gap cTx− bTy ≈ xT z quantify the distance from this ideal.

The bottleneck in the linear approaches presented in the BPI is that the methods

either su�er from sensitivities, when the waveforms "interfere" yielding waveforms

that are not present in the dictionary, or from the inability of the L1 norm to impose

sparseness for a highly redundant dictionary with waveforms that are relatively close

in their behavior and potential to amplify the noise. In that sense, our problem turns

out to be similar to many (geophysical) inversion problems plagued by nonuniqueness.

The balance between sensitivities and redundancies of the dictionary is pursued by

varying the tradeo� factor λ. Another issue for our BPI is the computation time.

Because our BPI solution utilizes the Newton-Gaussian step method, it is more time

consuming than the other two methods. Nonetheless, processing speeds are increasing

quickly and parallel computation techniques are becoming more and more powerful.

Computation speed will not be the problem.

2.4 Matching Pursuit

? have presented a theoretical basis for Matching Pursuit (MP) mainly in the

application of time-frequency decomposition. Time-frequency decomposition relies

heavily on the orthogonality or biorthogonality of time-frequency atoms, which are
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not satis�ed in seismic inversion. ? adopts a MP algorithm in a seismic re�ection

inversion in his dissertation by formulating the inversion problem as Eq. 2.17:

s = Σm−1
n=0 rnWn +Rms, (2.17)

where s is the seismic image trace; rn is the nonzero re�ection coe�cient; Wn is the

seismic response element, which can be considered as each column of the G matrix;

and Rn represents the residual after m iteration. Starting from an initial approx-

imation s0 = 0 and residual R0 = s, the method builds up a sequence of sparse

approximations stepwise. At stage m, it identi�es the dictionary atom that best cor-

relates with the residual, then adds to the current approximation a scalar multiple

of that atom, so that sk = sk−1 + rkWk, where rk =< Rk−1s,Wk > and residue

Rks = s− sk. After k steps, one has a representation of Eq. 2.17, where the original

signal is decomposed into a series of dictionary elements with corresponding coe�-

cients and the residual R = Rk. An intrinsic feature of the algorithm is that when

stopped after a few steps, it yields an approximation using only a few atoms. Because

the most common application of Matching Pursuit is in a time frequency decompo-

sition, it utilizes a family of orthogonal time-frequency atoms. When the dictionary

is orthogonal, the method works perfectly. If the object is made up of only m < n

atoms, and the algorithm is run for m steps, it recovers the underlying sparse struc-

ture exactly.

When applied in a seismic re�ection inversion, MP utilizes a seismic wavelet in-

stead of any orthogonal or biorthogonal time-frequency atoms. Such a wavelet is
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usually derived from the seismic data. When the dictionary is not orthogonal, the

situation is less clear. Because the algorithm is myopic, one expects that, in certain

cases, it might choose incorrectly in the �rst few iterations and, in such cases, end up

spending most of its time correcting for any mistakes made in the �rst few terms. In

fact ,this does seem to happen in practice.

The implementation of MP in a seismic inversion di�ers from time-frequency de-

composition applications only in the construction of the elements dictionary. The

dictionary for a seismic re�ection inversion consists of the seismic response of the

corresponding wavelet and re�ectivity patterns. For example, any re�ection series

can be represented as the summation of a series of isolated spikes with corresponding

coe�cients. The isolated spike and its corresponding seismic response are shown in

Eq. 2.18:

Wti = w(t) ∗ δ(t− τi), (2.18)

where w(t) is the seismic wavelet; τi represents the time shift; and Wti is the seismic

response. So any seismic image trace s(t), combining with Eq. 2.18, can be described

as:

s(t) =
∞∑

n=−∞

rnWtn(t) + n(t), (2.19)

MP chooses the most correlated element ϕti at each iteration from the dictionary, with

residual decaying to an acceptable level. The corresponding coe�cient � re�ection

coe�cient � is calculated by an inner production of the elements with a seismic image

trace as shown in Eq. 2.20:

ri =< s(t),Wti > . (2.20)
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So far, MP is going to choose a set of elements Wti(τ,t), i = 1...M that most matches

the seismic image trace s(t) at speci�c time shift ti. This is done by successive ap-

proximations of s(t) with projections on the selected elements from the dictionary.

After M step MP processing, the ri and corresponding element ϕti have been calcu-

lated with the acceptable mean square error RMs left. The �nal calculated re�ectivity

series are a summation of the re�ection coe�cients, as shown in Eq. 2.21:

r′(t) =
M∑
i=1

riδ(t− ti). (2.21)

MP inversion only chooses those most correlated seismic responses with a seismic im-

age trace and optimizes the coe�cients on those selected elements. Such a procedure

only chases the local optimization at each iteration.

2.5 L2 Norm Constraint

The L2 norm minimization constraint, stated as Eq. 2.5, chooses the solution

of the minimal L2 norm. It is mostly common used in tomography because velocity

structure is assumed to be smooth; L2 norm minimization preserves smoothness very

well. When it is applied in a seismic re�ection inversion, it is similar to the common

deconvolution procedure. The di�erence lies in the kernel G matrix. Decovolution

uses a inverse �lter derived only from seismic image data, but a seismic re�ection

inversion use a well log calibrated wavelet. Detail of this method can be found in

many sources, among them (?, ?, ?).

The L2 norm constraint solution uses Backus-Gilbert (BG) model, which was
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�rst introduced by earthquake seismologists. The detail were discussed in a series

of papers: (? ? ?). ? �rstly introduced this method into the acoustic impedance

inversion. ? summarize the BG solution as used in exploration seismology. The

solution is shown as Eq. 2.22:

m = GT × (G×GT + εI)−1d, (2.22)

where ε plays the same role as trade-o� factor λ. Besides tomography and deconvo-

lution, model based acoustic impedance also utilizes an L2 minimization constraint.

The di�erence between these applications are the de�nitions of d, m and G matrix.

2.6 Comparison

To compare the di�erent methods of inversion, a 20 Hz ricker wavelet (shown

in the Figure 2.5) is used to generate a 1-D synthetic seismogram. A synthetic

re�ectivity series has been generated in Figure 2.6 (a) which models the layer cake

earth. Its broad band frequency spectrum is shown in Figure 2.7 (a) as much broader

than wavelet bandwidth. So, the synthetic seismogram (as shown in Figure 2.6 (b))

is the convolution result of the wavelet and re�ectivity calculated from Eq. 1.1, which

has similar frequency spectrum shape as a wavelet (shown in Figure 2.7 (b)). The

broad band re�ectivity series has been �ltered by the seismic wavelet into the similar

spectral shape as a wavelet, which leads to the band-limited e�ect. The gaussian

noise has been added into the seismogram with an S/N ratio of ten. The comparison

of the three kinds constrained inversion methods is compared below in Figure 2.5:
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Figure 2.5: Ricker wavelet; (a) time domain; (b) frequency spectrum

Figure 2.6 (c) shows the MP inversion result with a sparse re�ectors distribu-

tion. The MP solution recovers those most signi�cant events, but loses most minor

re�ectors because it maximizes the sparseness by minimizing the L0 norm of the re�ec-

tivity series. However those minor re�ectors probably relate to a thin bed reservoir.

Its broad bandwidth, as shown in the Figure 2.7 (c) comes from the spikes re�ectors.

The L2 norm minimization constraint inversion results are shown in Figure 2.6 (e)

and 2.7 (e). As described in previous section, L2 norm minimization inversion plays

as an inverse �lter that probably blows up noise. The noise suppression and resolu-

tion are balanced by varying the ε to achieve the best result. The results shown here

are the best results yielded by changing the ε. In the time domain, a smooth series

is shown that is very similar to the deconvolution result. The frequency spectrum
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appears as a bandwidth little somewhat broader than that of the wavelet, but still

su�ering from wavelet e�ect.

Figure 2.6 (d) and 2.7 (d) show BPI results in time and frequency domains re-

spectively. BPI generates highly dense spikes that maintain the best consistency with

true re�ectivity as in Figure 2.6 (a) and 2.7 (a). The apparent advantage of the BP

inversion comes from the L1 norm minimization that balances the sparseness of the

L0 and smoothness of the L2 norm minimization.

Figure 2.6: Time domain synthetic, (a) true re�ectivity; (b) synthetic seismogram; (c)

MP inversion result; (d) BP inversion result; (e) deconvolution result.
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Figure 2.7: Frequency domain synthetic, (a) true re�ectivity; (b) synthetic seismo-

gram; (c) MP inversion result; (d) BP inversion result; (e) deconvolution result.
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Wedge Dictionary

In the previous chapter, the basis pursuit inversion (BPI) was shown to have

an advantage for seismic re�ection inversions. However, even superior resolution

has become more and more necessary for oil �eld development to detect thin bed

reservoirs. Thin bed layers usually generate a pair of re�ectors at the top and bottom

which become thin bed re�ectors. Because thin bed layers have a very small bed

thickness, the re�ector pairs are very close to each other (with time interval δt < 1/4T ,

where T is the period of the wavelet) and their seismic responses will interfere with

each other (?). This interference becomes the main di�culty in resolving the thin

bed, which has been considered to be a limitation for seismic resolution. To resolve

such thin bed re�ectors, we will use a wedge dictionary leading to a much higher

resolution than using conventional methods.
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3.1 Dipole Decomposition

Because thin bed re�ectors can be considered as a re�ector pair, which can be

represented as two impulse functions cδ(t) and dδ(t+∆t), where ∆t is time thickness

of the thin bed, c and d are two re�ection coe�cients. Dipole decomposition will

decompose any re�ector pair into one even pair re and one odd pair ro, as shown in

Eq. 3.1:

re = δ(t) + δ(t+∆t); ro = δ(t)− δ(t+∆t), (3.1)

The corresponding coe�cients a and b, as shown in Figure 3.1, can be expressed as

in Eq. 3.2:

cδ(t) + dδ(t+∆t) = are + bro, (3.2)

The decomposition coe�cients are unique.

Figure 3.1: Any re�ector pair can be considered as summation of one even and odd

pair

Unfortunately, the thin bed thickness ∆t is usually unknown in practice. To cover

all possible bed thicknesses, a complete dipoles model is constructed, leading to a

wedge dictionary.
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3.2 Wedge Dictionary

The wedge model is a collection of dipole re�ectors with the interval increasing

from zero to a speci�c interval, as shown in the Figure 3.2. Figure 3.2 (a) and (b)

are even and odd dipole, respectively. Figure 3.2 (c) and (d) are the corresponding

seismic response of the even and odd wedge with a given wavelet.

Figure 3.2: Even and odd wedge model and their seismic responses

Suppose the sample rate is ∆t. Each trace of the even wedge holds a pair of spikes

with an interval of n∆t, with n increasing from zero to a speci�c integer. The spikes

pair shifts with time scale m∆t, as m ranges from the �rst sample to the last one.

So, each even wedge re�ectivity can be written as:

re(t,m, n,∆t) = δ(t−m∆t) + δ(t−m∆t+ n∆t) (3.3)

The odd wedge has the same pattern as the even wedge, except that the dipoles are
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opposite:

ro(t,m, n,∆t) = δ(t−m∆t)− δ(t−m∆t+ n∆t) (3.4)

So, any re�ectivity series can be considered as a summation of even and odd wedges

with a time shift along the time axis, as shown in Eq. 3.5:

r(t) =
N∑

n=1

M∑
m=1

(an,m ∗ re(t,m, n,∆t) + bn,m ∗ re(t,m, n,∆t)). (3.5)

Figure 3.3 shows an example of the re�ectivity of 100 samples. Through dipole de-

composition, the �rst piece of summation consists of a dipole with an interval of 1

sample rates that shifts from time zero to time end, summing up with coe�cients

from a1,1 to a1,99. The second piece of summation consists of a dipole with an interval

of 2 sample rates that shifts from time zero to time end summing up with coe�cients

from a2,1 to a2,98. This process continues to the interval of 10 sample rates in this

example. The total summation has same pattern for both even and odd wedges; the

total number of elements in a summation is listed in Figure 3.3. When convolved

with a given wavelet on both sides of Figure 3.3, it gives a similar decomposition of

seismic response. On one side, any seismic image trace is the convolutional result of

re�ectivity with the given wavelet; on the other side, the summation of the seismic

response of the wedge model leads to the same seismic image trace. The decompo-

sition of re�ectivity into wedge re�ectors and the seismic image trace into a wedge

seismic response share exactly the same coe�cients an,m and bn,m as shown in Figure

3.4. The problem remains of how to calculate those coe�cients an,m and bn,m.
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Figure 3.3: Any re�ectivity series can be considered as a summation of even and odd

wedge

Figure 3.4: Any seismic trace can be considered as a summation of wedge model

seismic responses
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3.3 Linear Program

To calculate the coe�cients an,m and bn,m, Basis Pursuit technique may be ap-

plied. Coe�cients an,m and bn,m are �rst calculated by solving the linear equation

(shown in Figure 3.5) with basis pursuit. Using this method, each seismic image trace

is decomposed into dipole seismic response elements with the corresponding coe�-

cients an,m and bn,m .

After all of these coe�cients are found by basis pursuit (shown in Figure 3.5),

the �nal re�ectivity can be calculated by multiplying the above coe�cients and the

corresponding wedge re�ector matrix, as shown in Figure 3.6.

Figure 3.5: Seismic trace as multiplication of dipole seismic response and correspond-

ing coe�cients
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Figure 3.6: Re�ectivity can be calculated by multiplying the coe�cients am,n and bm,n

with wedge re�ectivity.
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Sensitivity Study of BPI

This chapter investigates the sensitivity properties of the BPI algorithm. First,

we analyze the e�ect of wavelet inaccuracy on the BPI because the exact wavelet is

never known. Second, we evaluate the sensitivity of BPI to the random noise because

seismic data is contaminated with noise. Finally, we compare BPI and SSI inversions

demonstrating the uplift of BPI.

4.1 Sensitivity of Inaccurate Wavelets

A poststack seismic image trace is known to be nonstationary with time variant

frequency and phase. In practice, it is very hard to utilize a time varying kernel

wavelet in any inversion program. Either a simple time varying kernel wavelet may

not �t the whole dataset, or such a trend could destabilize the whole inversion pro-

gram. Usually, a time invariant kernel wavelet, which can be derived from the seismic

well tie. Because such a wavelet is usually calculated within a time window which
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probably relates to the target zone, it can also be considered as a kernel Jacobin func-

tion of seismic image data over well log re�ectivity. The seismic image trace within

the time window can also be considered as piecewise stationary. We �rst study the

wavelet frequency with synthetic test.

Figure 4.1 shows 30 Hz, 40 Hz and 50 Hz ricker wavelets.

Figure 4.1: Blue is a 50 Hz ricker wavelet; black is a 40 Hz ricker wavelet; green is a

30 Hz ricker wavelet

The 40 Hz ricker wavelet is used to generate a synthetic seismogram with a random

re�ectivity series (as shown in Figure 4.2 (a) and (b)). All three frequency wavelets

are used in BPI respectively. The inverted re�ectivity are shown in the Figure 4.2

(c), (d) and (e). As expected, Figure 4.2 (c) shows a good �t inversion result with 40

Hz wavelet. Figure 4.2 (d) shows an inversion result with 30 Hz wavelet showing big

biasing from the true re�ectivity. 50 Hz wavelet inversion result (shown in Figure 4.2

(e)) shows a spiky result which looks better than than 30 Hz result. The synthetic

test shows that an underestimated frequency wavelet might produce a worse inversion
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result than an overestimated frequency wavelet. From this test, it appears necessary

to have a frequency �t kernel wavelet for our inversion.

Figure 4.2: (a) shows the synthetic seismogram generated from a 40 Hz ricker wavelet

with 10% random noise; (b) true re�ectivity; (c) inversion re�ectivity with a 40 Hz ricker

wavelet; (d) inversion re�ectivity with a 30 Hz ricker wavelet; (e) inversion re�ectivity

with a 50 Hz ricker wavelet.

Besides frequency, phase is also a time variant for any kind of seismic data. It is

also very hard to apply a phase change kernel wavelet on an inversion. For simplicity,

a constant phase wavelet� minimum phase � is used for inversion. We use a synthetic

test to observe the sensitivity of BPI on a wavelet phase.
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Figure 4.3: Black shows a zero phase ricker wavelet; red is a 30 degree phase rotation;

green is a 60 degree phase rotation; blue is a 90 degree phase rotation

Figure 4.3 shows the zero, 30, 60 and 90 degree phase ricker wavelets used for the

synthetic test. The zero phase wavelet is used to generate a synthetic seismogram,

as shown in Figure 4.4 (a) and (b). Figure 4.4 (c) shows the inversion result with

the zero phase wavelet; (d), (e) and (f) show the inversion results with 30, 45 and 90

degree wavelets. Inverted with a biasing phase wavelet, the inversion result is shown

to be very consistent with true re�ectivity. Even at a phase shift of 90 degree, an

obvious phase rotation appears in the inversion results that is consistent with true

re�ectivity at most events. Rotation is caused by the rotated phase of the wavelet,

but the result is fairly stable.
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Figure 4.4: (a) shows the synthetic seismogram generated from a zero phase ricker

wavelet with 10% random noise; (b) true re�ectivity; (c) inverted re�ectivity with a zero

phase wavelet; (d) inversion re�ectivity with a 30 degree phase wavelet; (e) inversion

re�ectivity with a 60 degree phase wavelet; (f) inversion re�ectivity with a 90 degree

phase wavelet
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4.2 Sensitivity of Random Noise

Figure 4.5: (a) True re�ectivity; (b) inverted re�ectivity with 5% random noise; (c)

inverted re�ectivity with 10% random noise; (d) inverted re�ectivity with 20% random

noise; (f) inverted re�ectivity with 40% random noise;

Noise sensitivity is also critical to the BPI method. Noise cannot be avoided,

only suppressed. In this section, we test the e�ect of random noise on BPI. Figure
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4.5 (a) shows a synthetic seismogram that is generated from the convolution of a ran-

dom re�ectivity (shown in Figure 4.5 (b)) with a 40Hz ricker wavelet. The synthetic

seismogram is �rst contaminated with 5%, 10%, 20% and 40% random noise, then

BPI is implemented. Figure 4.5 (c), (d), (e) and (f) show the BPI result under 5%,

10%, 20% and 40% noise level.

To get the best inversion result, di�erent balances between noise and resolution

are pursued at di�erent noise levels. In these tests, inverted re�ection coe�cients

are shown to become lower with noise levels increasing because as more noise needs

to be suppressed, more signal energy has to be sacri�ced. To live up with noisy

world, inverted re�ectivity should be proportional to true re�ectivity, which means

consistent of the inversion results should be obtained. In this way, most events from

the model re�ectivity series are retained in the inversion results.

4.3 Comparison to Sparse Spike Inversion (SSI)

As known, SSI has been used widely in industry for many years. The two

most commonly used products are Hampson-Russell and Fugro-Jason SSI. Hampson-

Russell SSI uses a linear program described by ?; the Fugro-Jason SSI algorithm is

described by ?, ? and ?. In contrast to BPI, both Hampson-Russell and Fugro-Jason

SSI only solve the primal linear program shown in Eq. 2.9. The same parameter

of sparseness is used to control the sparseness of the inverted results. In contrast,

the trade-o� factor λ in BPI plays a similar role to control the inversion result. In
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practice, to get the best result, the proper parameter setting for any �eld data ap-

plication is decided from a pretest. In this section, we compare apples to apples, by

varying the trade-o� factors to compare the best results obtained under SSI and BPI

methods. After the 1-D synthetic test, we calculate the correlation between inverted

and true re�ectivity, which quantitatively evaluates the inversion results; The best

results from SSI are compared to the best from BPI.

Figure 4.6 (a) and (b) show a synthetic seismogram and true re�ectivity; 10%

random noise is added. Figures 4.6 (c) and (d) show inversion results with small λssi

quantities that boost up the noise. Figures 4.6 (g) and (h) show large trade-o� factor

that create sparse inverted re�ectivity. Too small and too large trade-o� factors each

lead to a discrepancy from true re�ectivity. The best inversion results are located

between 10−4 and 10−3, so we test using with λssi between 10−4 and 10−3. Although

we only show inversion results with λssi ranging from 2 × 10−4 to 7 × 10−4, many

more tests were performed. The correlation between inverted and true re�ectivity is

plotted in Figure 4.7. This plot shows that the maximum correlation is around 0.8,

with λssi around 2× 10−4.

Figure 4.8 shows the BPI results. We present the small trade-o� factor results in

Figure 4.8 (c) and (d). As with the SSI results, noise is ampli�ed. Figure 4.8 (g) and

(h) show large λbpi that produce sparse inverted results. Too small and too large λbpi

lead to the same e�ect on inversion results under both SSI and BPI. In this case, the

best BPI result is located between 2 and 3. The results of intense scanning of λbpi are

shown at Figure 4.8 (i)�(n). The correlation of BPI and true inverted is plotted at
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Figure 4.6: (a) Synthetic seismogram with 40 Hz ricker wavelet and random noise; (b)

true re�ectivity; (c) to (n) show SSI results with varying λssi value; (c) λssi = 10−6;

(d) λssi = 10−5; (e) λssi = 10−4; (f) λssi = 10−3; (g) λssi = 10−2; (h) λssi = 10−1;

(i) λssi = 2 × 10−4; (j) λssi = 3 × 10−4; (k) λssi = 4 × 10−4; (l) λssi = 5 × 10−4; (m)

λssi = 6× 10−4; (n) λssi = 7× 10−4.

Figure 4.9. The maximum correlation is approximately 0.9 located around 2.2. This

synthetic test shows that the BPI method has apperant advantage over SSI method

Because L1 norm minimization leads to the spiky series of the solution, λ balances

sparseness with resolution in both BPI and SSI. But BPI can produce a better re-

sult than SSI if we choose the proper λ. Parameter λ acts as a trade-o� parameter
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Figure 4.7: λ− correlation curve of SSI. The correlation between SSI and true re�ec-

tivity is plotted according the trade-o� factor λssi

between underestimating the re�ectivity and underestimating the noise. The re�ec-

tivity will always be underestimated when minimizing the L1 norm of the re�ectivity

and noise when the signal to invert is contaminated with noise. The magnitude of

the underestimation increases with the noise level. Parameter λ a�ects the resolving

power of the inversion method. When more complex re�ector con�gurations have

to be resolved, a decreasing λ is required; when stronger noise realizations must be

resolved, an increasing λ is required.

When minimizing the L1 norm of the re�ectivity and the noise, λ in�uences only

the resolutions not the magnitudes of the underestimation of the re�ectivity or noise.

When the objective function to minimize is not entirely L1, there is a trade-o� between

resolution and underestimation of the re�ectivity. The a priori power, the desired

error and the desired resolution of the re�ectivity and noise and the objective function
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Figure 4.8: (a) Synthetic seismogram with 40 Hz ricker wavelet and random noise; (b)

true re�ectivity; (c) to (n) show BPI results with varying λbpi value; (c) λbpi = 10−2;

(d) λbpi = 10−1; (e) λbpi = 2; (f) λbpi = 3; (g) λbpi = 500; (h) λbpi = 600; (i) λbpi = 2.1;
(j) λbpi = 2.2; (k) λbpi = 2.3; (l) λbpi = 2.4; (m) λbpi = 2.5; (n) λbpi = 2.6.

to be minimized are all parameters in the choice of the optimum trade-o� parameter

λ. Therefore, there will always be a trade-o� between noise and re�ectivity, and

between sparsity and accuracy. The conclusions may, therefore, only be used as

rough qualitative guidelines and cannot be interpreted quantitatively. Parameter λ

is too complex to be optimized analytically.
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Figure 4.9: λ − correlation curve of BPI. The correlation between BPI and true

re�ectivity is plotted according the trade-o� factor λbpi

4.4 2D Synthetic

In this section, we produce wedge models with a 1-ms sample rate for a predomi-

nantly odd re�ection- coe�cient pair, r1 = 0.1 and r2 = 0.2 (in Figure 4.10 (a)), and a

predominantly even re�ection-coe�cient pair, r1 = 0.1 and r2 = −0.2 (in Figure 4.10

(b)). The thickness increases from 1ms to 20ms. The tuning thickness of a thin-bed

model with a Ricker wavelet is given by ?. Eq. 4.1

tR =

√
6

2πf0
, (4.1)

where f0 is the dominant wavelet frequency. For a 40Hz Ricker wavelet, tR = 10 ms.

To achieve a more realistic model, we test the model with zero and 10% noise

levels. The forward-modeling procedure is illustrated in Figure 4.10. We test both
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Figure 4.10: Original re�ectivity wedge models for (a) an odd wedge and (b) an

even wedge. Seismic data is generated with a 40-Hz Ricker wavelet convolved with the

re�ection-coe�cient pair (black wiggles). Tuning thickness is 10ms.

BPI and SSI algorithms at noise free and with 10% noise levels. Figure 4.11 shows the

noise free inversion results for the predominately even wedge model. Figure 4.11 (a)
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and (b) show the best BPI and SSI inverted re�ection coe�cients with λBPI = 10−2

and λSSI = 10−7. Figure 4.11 (c) and (d) show the corresponding residuals which are

subtractions of the true re�ectivities from inverted re�ectivities. The BPI residual

values (in Figure 4.11 (c)) are small at thickness of 2 and 3 ms, while the SSI residuals

(in Figure 4.11 (d)) show obvious values at thicknesses from 2 to about 5 ms.

Figure 4.11: Inverted re�ectivity for predominately even wedge model. (a) BPI in-

verted results with λBPI = 10−2. (b) SSI inverted results with λSSI = 10−7. (c)

Residuals from BPI inverted results. (d) Residuals from SSI inverted results.

Figure 4.12 (a) and (b) show the best BPI and SSI results for the predominately
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Figure 4.12: Inverted re�ectivity for predominately odd wedge model. (a) BPI inverted

results with λBPI = 10−2. (b) SSI inverted results with λSSI = 10−7. (c) Residuals

from BPI inverted results. (d) Residuals from SSI inverted results.

odd wedge model. Figure 4.12 (c) and (d) show the residuals of BPI and SSI, re-

spectively. The BPI results (in Figure 4.12 (c)) show obvious residuals at thicknesses

from 1 to 3 ms, while SSI results (in Figure 4.12 (d)) show residuals from 1 to 4ms.

Figure 4.13 shows the BPI and SSI inversion results of the predominantly even

wedge model with an S/N ratio of 10. Figure 4.13 (a) and (b) show the BPI and

SSI inverted results with λBPI = 2 and λSSI = 10−3, respectively. Figure 4.13 (c)
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Figure 4.13: Inverted re�ectivity for predominately even wedge model with 10% noise.

(a) BPI inverted results with λBPI = 2. (b) SSI inverted results with λSSI = 10−3. (c)

Residual from BPI inverted results. (d) Residual from SSI inverted results.

and (d) show the corresponding residuals. Figure 4.13 (c) shows residuals of BPI

at thicknesses from 2 to 6 ms while Figure 4.13 (d) shows apparent residuals at

thicknesses from 2 to 15 ms.

Figure 4.14 (a) and (b) show the BPI and SSI inversion results of the predomi-

nantly odd wedge model with an S/N ratio of 10. Figure 4.14 (c) and (d) show the

corresponding residuals. The BPI results (in Figure 4.14 (c)) show obvious residuals
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at thicknesses from 1 to 7ms and weak residual beyond 7 ms. Figure 4.14 (d) shows

obvious residuals of SSI at thicknesses from 1 to 8 ms that decay beyond 8 ms.

Figure 4.14: Inverted re�ectivity for predominately odd wedge model with 10% noise.

(a) BPI inverted results with λBPI = 2. (b)SSI inverted results with λSSI = 10−3. (c)

Residual from BPI inverted results. (d) Residual from SSI inverted results.

Because inversion is a trace by trace procedure, one may question its lateral con-

tinuity. We create a 2-D synthetic using a piece of the well-log re�ectivity series to

generate a 2-D complex wedge model. The middle part of the well-log re�ectivity

is thinned from left to right (as shown in Figure 4.15 (a)). Corresponding synthetic
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seismic data is generated with a 30 Hz ricker wavelet. Figure 4.15 (c) shows the BPI

inverted result with λ of 2.2. Figure 4.15 (d) shows the residual of true over inverted

re�ectivity. In this synthetic test, BPI shows good lateral continuity with superior

vertical resolution. The BPI on this 2-D synthetic test is carried on trace-by-trace

which also produces convincing results with superior vertical resolution and great

lateral continuity. All of these synthetic tests lead to the con�dence to the �eld data.

Figure 4.15: (a) True re�ectivity; (b) synthetic seismogram with 10% random noise;

(c)BPI inverted re�ectivity with λbpi of 2.2; (d) residual of true over BPI inverted

re�ectivity; (e) SSI inverted re�ectivity with λssi of 10
−3; (f) residual of true re�ectivity

over SSI inverted re�ectivity
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Application to Field Data

The fundamental di�culty when applying basis pursuit inversion (BPI) to real

data is the fact that real data do not satisfy the convolution equation. In other words,

a perfect tie between the synthetic and the seismic data at the well location is im-

possible (?).

If we insist a very good synthetic tie to be a prerequisite to the inversion, we

will most like be frustrated. The convolution equation represents a much simpli�ed

earth model: zero-o�set, normal incidence seismic on a one-dimensional medium. The

poststack seismic image data on which we perform the inversion are usually the re-

sult of stacking prestack migration, which uses a velocity model to focus energy from

di�erent o�set. The velocity model is rarely perfect, leading to incorrect event loca-

tions. The migration amplitude represents some kind of average of re�ectivities from

a large angle range. But most interpretation work is still carried on this poststack

seismic image because it shows the geological structure. The calibrated wavelet used
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here from the seismic well tie can be considered as the derivative of poststack seismic

image data over well log re�ectivity. It plays as jacobin kernel, as in all the other

inverse problems. Our inversion method invert the poststack seismic image based on

the well-log re�ectivity model.

In the previous chapters, di�erent synthetic tests show that BPI is doing well on

1-D and 2-D cases. In this chapter, we present various applications of BPI on real

�eld data. Application I mainly focuses on the good �t between BPI results and well

log impedance data, which highlights the convincingly superior vertical resolution.

Application II focuses on the consistency of BPI re�ectivity to the original seismic

image data. Application III mainly shows the improvement of BPI results on strati-

graphic interpretation by a comparison to SSI results. Applications IV and V show

the example of how our BP inversion works on 3-D datasets and its impact on inter-

pretation. Finally, application VI places a glance of application of BPI on prestack

data that probably leads to lots of future work.

5.1 Application I

The �rst application is to test the correlation of BPI with the original seismic

image and well-log data. Seismic image data (in Figure 5.1) is a piece of onshore

datasets with a well located at the black rectangle. The well-log information for

lithologic interpretation, including gamma ray, resistivity, is available at Figure 5.2.
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Figure 5.1: Original seismic image data with RMS amplitude of 6.1 × 104. A well is

located at the place of black rectangle.

We created a synthetic tie between the input seismic data and the well-log data,

stretching the well-log data to time without reference to the inverted data for an

unbiased, quantitative layer-thickness comparison between the well-log data and the

inverted data. In the original seismic tie to the well, at Figure (5.2), we achieved

a relatively good �t r = 0.79 between the well-log re�ectivity convolved with the

extracted wavelet and the extracted seismic image trace.

54



Chapter 5. Application to Field Data

Figure 5.2: Well-log data, including resistivity, and computed impedance, along with

the synthetic tie (blue), the trace at the well (red), and the seismic traces surrounding

the well (black). The correlation coe�cient r is 0.79

The wavelet extracted from the well for the synthetic is shown in Figure 5.3. The

peak frequency of the wavelet is about 25 Hz, yielding a one-quarter-wavelength res-

olution of about 20 ms. The phase of the wavelet is about 140 degrees, leading to a

negative polarity of seismic data.
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Figure 5.3: (a)Well log calibrated wavelet in time domain; (b)the phase and amplitude

spectra of the wavelet. The peak frequency is about 25 Hz; phase is about 180 degree.

BPI is applied to the seismic image data (Figure 5.1) based on the calibrated

wavelet (Figure 5.3). The BPI inverted re�ectivity cross section is shown in Figure

5.4. However, doubts about the validity of the inversion result remain. Based on

inversion theory, the validity of inversion results rely on the random distribution of

the residual.
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Figure 5.4: Inverted re�ectivity section.

Figure 5.5 shows the residuals which is the subtraction of the original data by in-

verted re�ectivity convolved with the wavelet. Comparing to the original seismic sec-

tion with RMS amplitude as 6.1×104, the residual holds RMS amplitude of 2.2×103.

The small magnitude of the residual demonstrates that the BPI remains constant with

the seismic data. Such a random distributed 2-D error from BPI shows its robustness.
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Figure 5.5: Residual between original data and inverted re�ectivity convolving with

the extracted wavelet with RMS amplitude = 2.2× 103.

We also visually compare the well-log data with the basis pursuit inverted relative

impedance, (in Figures 5.6) where the well-log relative impedance is used to test

the validity of our basis pursuit inversion processing. The relative impedance is the

exponential integration of re�ectivity. However, because the seismic data are much

lower in frequency than the well-log data, the �t is useful only as an approximation for

aligning gross lithologic packages. A great deal of useful information is lost due to the

seismic wavelet. The BPI provides a signi�cantly better representation of the layering

observed in the log data than the original seismic data does. Figure 5.6 displays basis

pursuit inversion impedance and well-log impedance in color. This �gure emphasizes

inverted relative impedance changes to provide a very good tie to the well with higher
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�delity. Through this good tie, the well log interpreted sand and shale packages (see

Figure 5.2) can be easily extended into a seismic cross-section.

Figure 5.6: Comparison between basis pursuit inverted data and well log data with

seismic image wiggles overlayed. The middle column is the well impedance low-cut

�ltered.

Viewing the comparison of BPI impedance to the overlayed original seismic image

wiggles in Figure 5.6, it is clear that some boundaries between layers are indistinct

on the original seismic section. Layers below the tuning thickness (20ms) are not

resolved in the original seismic data. Geologic detail is obscured by the wavelet in-

terference patterns, which become more apparent when compared with the inversion.

A skilled interpreter can decipher meaningful information embedded in the wavelet-

interference patterns, but it is desirable to remove these artifacts altogether to allow

direct access to the underlying geology.
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Generally, sands correspond to a lower gamma ray, higher resistivity and higher

impedance; shales correspond to high gamma ray, lower resistivity and lower impedance.

In the interval shown in Figure 5.7, a shale embed sands is indicated by gamma ray

and the sands have higher impedance than the shales. The interpretation of well-

log data shows a close correspondence to the inverted data. We observe that the

sand-shale-sand sequence is resolved below the tuning thickness. The original seismic

data (Figure 5.7 (c)) is compared with the well log and the BPI data (Figure 5.7

(b)). The original seismic data fails to delineate thin shale layering as compared with

the inverted data. The inverted data resolves similar gradational changes within an

individual layer as the impedance log (Figure 5.7 (a)).

Figure 5.7: Well log (left) compared with BPI data (middle) and original seismic image

data (right). Well log location is indicated by the black rectangle on the top. Shale are

indicated by of higher gamma ray and low impedance in this interval.

A Comparison of the well-log impedance to the inverted impedance, shows the

thickness inversion layering below the tuning thickness (the peak frequency of the data

is 25 Hz, yielding a one-quarter-wavelength resolution of about 20 ms). Figure 5.7
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shows a well-resolved sand-shale-sand sequence that has a embedded shale thickness

of 3 ms (about 10 meters), which is much thinner than the tuning thickness (Figure

5.7). Although the thickness inversion e�ectively delineates the layering sequence

below tuning, it also captures gradational impedance changes within thin layers, as

in the case of sand grading into shale. Through BPI relative impedance, it is much

easier to pick out the shale layer that has already been indicated by well log data.

5.2 Application II

This example demonstrates the vast improvement in vertical resolution for dis-

crete layers that is achieved by using basis pursuit inversion rather than other in-

version methods. Figure 5.8 shows an OBC dataset from the Gulf of Mexico, where

the black �lled rectangle shows the well-log location. The well-log calibrated wavelet

spectrum is shown in Figure 5.9. By using BPI, inverted re�ectivity is shown in

Figure 5.10.
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Figure 5.8: Seismic data from the Gulf of Mexico. The detailed result within the black

rectangle will be analyzed later.

Figure 5.9: The phase and amplitude spectra of the wavelet extracted from the seismic

well tie. The peak frequency is 10 Hz.
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Figure 5.10: BPI inverted re�ectivity from �eld data, shown in Figure 5.8. Red is

positive; blue is negative.

Inverted re�ectivity has the wavelet e�ect absolutely removed. Such a re�ectivity

cross-section gives a much clearer view of the subsurface than seismic data, which is

a "blur" image caused by the wavelet e�ect. The re�ectivity cross-section not only

gives the magnitude of the impedance contrast but also the accurate location the the

interface. Both the position and the amplitude of the re�ectivity are very helpful in

locating and evaluating the reservoir. Using this re�ectivity section, an interpreter

can easily pick the horizon by following the re�ectivities. Here, the positive re�ection

coe�cients mean a low to high impedance transaction. Vice verse.

Figure 5.11 shows the smaller piece from the black rectangle in Figure 5.8; Figure
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5.12 shows BPI inverted re�ectivity.

Figure 5.11: The small piece of data within the black rectangle in Figure 5.8
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Figure 5.12: BPI Inverted re�ectivity from Figure 5.11

A possible question that could crop up in an interpreter's mind is whether the

extra level of re�ection detail is genuine. An overlapping display of seismic data with

re�ectivity are shown in Figure 5.13. Figure 5.13 (a) shows a large scale of the image

and (b) shows a detailed image. Because the wavelet used is approximately zero

phase, re�ectivities are mostly located at the peak and trough of the seismic. Such

consistency of re�ectivity and original seismic data makes it believable that all the

results come from the seismic image data and not something else. Many thin-bed

re�ectivities have been resolved within a single positive of negative amplitude. As

pointed by the blue arrow, multiple positive re�ectors are resolved within the positive

amplitude. The red arrow shows that multiple negative re�ectors are resolved within
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the negative amplitude.

Figure 5.13: (a) Overlap display of original seismic data with re�ectivity; (b) overlap

display of original seismic data with re�ectivity within the black rectangle in (a).
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5.3 Application III

Basis pursuit inversion (BPI) takes advantage of L1 norm minimization con-

straint, leading to a spiky result, and the wedge dictionary, leading to thin bed res-

olution. Thus it can resolve much more detail than conventional inversion methods,

such as sparse spike inversion (SSI). In this section, we apply both SSI and BPI on

the dataset contained in the previous section. Figures 5.14 � 5.18 show a comparison

between BPI and SSI with relative impedance; the original seismic image wiggles are

overlayed. The calibrated wavelet used here holds peak frequency of about 8Hz with

a phase of zero. The tuning thickness of this data is about 50 ms.

Figure 5.14 (b) shows an SSI result. It captures those major contrasts in con-

sistency with seismic image wiggles. For example, positive wiggles correspond to a

low to high impedance change within the yellow rectangle. Figure 5.14 (a) displays

BPI results that resolve many more thin layers than the conventional sparse spike

method. An original seismic image is also taken into comparison showing that basis

pursuit can resolve several layers within one seismic cycle, while conventional sparse

spike can only resolve three layers.

Figure 5.15 shows another example of how basis pursuit inversion helps interpre-

tation. Seismic image wiggles show a single horizon possibly picked along the peak

amplitude at this cross-section at about 2.1s. Basis pursuit inversion (in Figure 5.15

(a)) not only gives much higher resolution than sparse spike inversion (in Figure 5.15

(b)), but probably leads to a totally di�erent interpretation. A couple of possible

updip layers are indicated by white arrows (in Figure 5.15 (a) and (b)) which are not
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Figure 5.14: (a) BPI inverted impedance reveals many thin-bed layers within the

rectangle. (b) SSI inverted data shows a low to high impedance transaction within the

rectangle. The original seismic image data�overlayed as wiggles� shows one positive

continuous amplitude that can be picked as a horizon within the rectangle.

clear on seismic image wiggles and not resolved using SSI. Black eclipse �gures out

a possible wedge structure in BPI which is not seen at both SSI or original seismic

image wiggles.

Because of limited resolution, conventional SSI layers can be considered as the
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Figure 5.15: (a) BPI result reveals couples of lateral continuously updipping layering

(white arrow) characteristic of undisturbed layer-cake geology. (b) SSI result shows a

low and high impedance layering structure. Black eclipse in (a) emphasizes a wedge

structure inverted by BPI that is unclear in the seismic image wiggles.

average of several thinner bed layers. Yellow rectangle in Figure 5.16 (a) reveals

possible several thin bed layers, such as a low impedance thin bed embedded within

a thick high impedance layer, or a high impedance embedded within a thick low

impedance. SSI (Figure 5.16 (b)) resolves those thick layers as uniform layers. A

possible pinch-out interpretation (black ellipse) shows up by basis pursuit inversion

69



Chapter 5. Application to Field Data

in Figure 5.16 (a) which is not seen in sparse spike inversion.

Figure 5.16: (a) the BPI result shows a continuous high impedance layer embedded

in the low impedance within the rectangles while (b) SSI shows a pinch-out within the

rectangle. Black ellipse shows a possible pinch-out structure in the BPI result that does

not show up in the SSI results.

BPI (Figure 5.17 (a)) shows a possible channel (yellow circle) and fracture (white

arrow) interpretation that is invisible using SSI (Figure 5.17 (b)). SSI merges the
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Figure 5.17: (a) BPI result shows a possible channel structure within the yellow ellipse;

(b) SSI result does not show the channel structure. The white arrow in (a) points out

a possible fracture that is invisible in the SSI result.

above structure below the resolution. However, there are still some clues detected

unclearly by SSI. The basis pursuit inverted data shows a clearer picture of the chan-

nel geometry, with constant thinning of the channel-�ll wedges toward the edges of

the channel. In addition, the top and base bounding surfaces of the channel can be

picked more precisely on the basis pursuit inverted data at the pointed area with less

guesswork in the placement of horizons. Thus, BPI adds visual information that can
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Figure 5.18: A fault is interpreted within the rectangle. (a) Fault related fractures

within the rectangle show up with BPI. (b) The SSI result also shows up the discontinuity

across the fault.

contribute to seismic interpretation by delineating geologic features of interest such

as channels.

Figure 5.18 is an example of a fault structure. The original seismic wiggles, SSI

and BPI results show a strong discontinuity cross fault. At the fault zone, BPI gives

clear image of possible breaking fractures. Away from the fault, both sparse spike
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and basis pursuit appear as similar structures, which means that the break images in

rectangle Figure 5.18 (a) are probably caused by fault movements. We believe further

investigation of this phenomenon would be very interesting.

5.4 Application IV

Figure 5.19 shows an example of 3-D data from the previous dataset. Such

a 3-D application shows the impact of the inversion result for interpretation. The

original seismic data is wavelet �ltered earth, with much detailed subsurface �ltered

out. Figure 5.20 shows a re�ectivity cube that highlights all the interfaces between

layers which gives a framework of earth. Figure 5.21 shows a relative impedance cube

that represents a detailed property of that earth. We show that relative impedance

changes correspond to rock property changes permitting a great understanding of

rock property.
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Figure 5.19: 3-D data set

Figure 5.20: Inverted re�ectivity from seismic in Figure 5.19
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Figure 5.21: Inverted relative impedance

5.5 Application V

In this data application example, we show the impact of BPI on the 3-D data in-

terpretation using three horizons. Figure 5.22 (a) shows the original seismic poststack

image; its strong lateral discontinuity makes it very hard to interpret. In particular,

the lateral discontinuity creates di�culty in picking the horizon. Superior vertical

resolution and much better lateral continuity are achieved through use of BPI (as

shown in Figure 5.22 (b)) making interpretation easier. By this result, it becomes

much easy to interpret. Figure 5.22 (c) shows the Hampson-Russell model based in-

version result. This result relies on the low frequency model to access the absolute

impedance value. But, the Hampson-Russell inverted impedance is dominated by the

low frequency pro�le, resulting in the lack of resolution.
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Figure 5.22: (a) Original poststack seismic image. (b) BPI result. (c) Hampson-

Reusell inversion result.

Figure 5.23 shows three horizons map using BPI result and Hampson-Russell

result. The BPI result reveals much more structures that than Hampson-Russell

does.
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Figure 5.23: (a) and (d) show the horizon map of BPI and Hampson-Russell inverted

results from Horizon 1. (b) and (e) show horizon map of BPI and Hampson-Russell

inverted results from Horizon 2. (c) and (f) show horizon map of BPI and Hampson-

Russell inverted results from Horizon 3.

5.6 Application VI

All previous applications demonstrate how BPI works on poststack image data.

This application demonstrate that BPI works on prestack CDP gathers since prestack

data also su�ers from wavelet interference. Such interference is also caused by thin

bed structures which makes it very di�cult to pick separated velocity. BPI can in-

crease the resolution of prestack data that can help separate hyperbolic events.
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Figure 5.24: Original CDP gather. Red and blue ellipses show the possible interference

caused by thin-bed layers.

Figure 5.24 shows a prestack CDP gather. Di�erent hyperbolic curves are caused

by velocity changes along a depth. But thin bed layer makes these curves interfered

with each other, as shown in the red and blue ellipses, making it di�cult to detect the

velocity change. After BPI is applied, Figure 5.25 shows a high resolution re�ection

CDP gather. Figure 5.26 shows the detail comparison between the original prestack

CDP gather and the BPI inverted data that interfered hyperbolic events are separated.

When applying velocity analysis on the BPI inverted gather, a high resolution velocity

structure is approached. Figure 5.27 (a) shows a semblance section based on the

original CDP gather. Except the �rst hyperbolic curve, which comes from the water

bottom holding a constant velocity of 1500m/s at about 2 second, all the other events

are distorted by interference. The two white ellipses point out the aliasing area that
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Figure 5.25: Inverted CDP gather.

probably leads to an incorrect velocity. Semblance calculated from the BPI result

(shown in Figure 5.27) shows a much cleaner velocity structure with those events

separated. Semblance energy holds a much better concentration by the use of BPI,

making RMS velocity easily picked.

79



Chapter 5. Application to Field Data

Figure 5.26: Detail comparison between original prestack CDP gather and BPI in-

verted data. (a) original CDP gather; (b) inverted CDP gather.
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Figure 5.27: Comparison between semblance calculated from original and BPI in-

verted CDP gather. (a)Semblance calculated from original CDP has low resolution; (b)

semblance calculated from inverted CDP has much higher resolution. Aliasing in (a)

(white ellipse) is caused by the waveform interference can lead to wrong picking.
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Conclusions

The BPI method we describe here is a novel way of removing the wavelet from the

seismic data and extracting a high resolution re�ectivity. Although appreciable noise

in the data deteriorates the performance of the inversion outside the frequency band

of the original seismic data, BPI still enhances high frequencies beyond the bandwidth

without amplifying noise. Nevertheless, the highly resolved seismic data retrieved in

the form of re�ectivity data are very useful for making accurate interpretations and

prove to be advantageous in many ways, as we demonstrate using examples. A fun-

damental aspect of signal processing is that a valid signal cannot be produced by

digital �ltering at frequencies where the signal is absent. All an inverse �lter can

do is amplify noise where there is no or little signal. On the other hand, inverted

seismic data commonly have frequencies outside the band of the original data. All

spiky re�ectivity inversions have frequency content that exceeds the original seismic

bandwidth. We know that frequencies outside the original bandwidth of the data are

within the null space of the inversion. The inversion process can put anything there;
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the original seismic data will be recovered when the output spike series is convolved

with the original seismic wavelet used in the inversion. So the issue is not whether

one can output high frequencies that are not contained in the inversion. The issue is

"how valid are they?" The answer depends entirely on the assumptions that are made

(and the a priori information used to recover those frequencies), how well matched

those assumptions are to reality, and how useful the results are. In our case, we only

utilize the mild assumption that the earth is blocky, with a small number of re�ections

contributing to any given seismic re�ection response. If there is an even component

to these re�ections, we utilize it to push resolution beyond the classical Widess limit.

Clearly, there will be some cases where a blocky earth model is not appropriate, and

the method will fail to some extent. Our conviction is that, more often than not, our

assumption is a su�ciently reasonable representation of the earth and, data quality

permitting, the inversion will produce useful results.

Beginning with a L1 norm minimization least-square, combined with a wedge dic-

tionary, BPI is used as a tool to unravel the complex interference patterns created

by thin-bed re�ectivity. These patterns can be inverted to obtain the original re�ec-

tivity. We developed and studied new analytical methods for BPI based on a wedge

dictionary. Representing the seismogram as a superposition of a wedge dictionary

constitutes a means of imposing on the inversion a priori assumption that sedimen-

tary rocks occur as layers with discrete interfaces at the top and base which can be

represented as such in a re�ectivity series. When this assumption is valid, the conse-

quence is that on the inverted results, there is geologically meaningful information at
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frequencies outside the band of the original seismic image data. When this assump-

tion is false, the recovered frequency information outside the band of the original

seismic image data will also be false. For example, smooth impedance transitions

may be inverted as blocky steps in impedance.

BPI with a wedge dictionary can be used to drive an inversion with signi�cantly

greater vertical resolution than that obtained by SSI, as tested by synthetic and �eld

data. Field data also shows improved correlation to well logs and stratigraphic inter-

pretation. These results are achieved without using well-log information as a starting

model or as a constraint. The resulting inversion, therefore, is unbiased by precon-

ceived ideas. As evidenced by the results of applying the method to real data, BPI

has great potential as a practical tool for seismic exploration. For example, a prestack

application o�ers great promise to improve velocity analysis.

The BPI we describe demonstrates improvement in vertical resolution; however,

we did not use well-log information after the wavelet-removal step. It would be

desirable to investigate the e�ectiveness of using well-log data to further improve

vertical resolution of interbedded layers, or gradational changes within layers, that

are not revealed by BPI alone. Another broad application may be found in the

prestack data. To perform migration inversion simultaneously on CDP gathers would

be a signi�cant innovation for seismic exploration.
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