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Abstract 
 

It is well known that laboratory measurements of P-wave velocity versus saturation do 

not behave in accordance with Biot-Gassmann equations. There are some missing physical 

mechanisms (squirt flow dispersion, fluid distribution in different aspect ratio pores…) and also 

experimental errors in measuring the porosity under environmental conditions. Laboratory P-

wave velocity versus saturation curves can be fit using Biot’s high frequency equations by: (1) 

varying the mass coupling factor value in order to compensate for the error in the assumed value, 

and (2) separating the total porosity into acoustically connected and disconnected portions by 

applying velocity-porosity empirical relations. The ratio of connected to total porosity 

representing a free parameter gives the freedom to fit the ending point of the curves and ignores 

the squirt flow dispersion mechanism. The saturation curves can be interpreted depending on 

three types of saturation systems: (1) uniform saturation where the gas and water fills the pores of 

different shapes homogenously at low water saturation, (2) fully segregated saturation where the 

gas fills the pores of high aspect ratio at high water saturation, and (3) patchy segregation 

(transitional zone) saturation where the gas exhibits heterogeneous distribution as patches of 

uniform and fully segregated saturation. Dispersion correction should be considered at sonic logs 

and lab frequencies. The results can be used to enhance seismic interpretations like bright spots, 

to maximize the recovery of known hydrocarbon reserves, to apply fluid substitution at a given 

frequency, and to understand elastic wave velocity at different scales (sonic, seismic).  
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Chapter 1   INTRODUCTION 

 
1.1   Introduction 
 

One of the most important matters in rock physics is to predict elastic velocities in 

rocks saturated with mixed fluids like water-gas and water-oil. Seismic velocities are 

very significant geophysical tools in reservoir applications. Elastic wave velocities vary 

with fluid saturation, and the influence of fluid saturation on elastic wave velocities in 

porous rocks is related to many factors, like pore geometry, fluid phase distribution, 

compressibility, acoustic coupling factors between solid and liquid, and pressure, 

temperature, and attenuation mechanisms.   

Identifying the effect of mixed fluid saturation like water-gas or oil-gas on elastic 

velocities is quite important in the interpretation of seismic direct hydrocarbon indicators 

(DHI) and for time-lapse observation of reservoir production, since the mixed fluids 

share the porous formations at the top part of gas-capped reservoirs. So it is necessary to 

know the relationship between fluid saturation and seismic characteristics like elastic 

moduli, velocity dispersion, and attenuation. 

The effects of mixed fluid saturation on elastic velocities of porous media have 

been considered by both theoretical and experimental techniques. Laboratory 

measurements are used to explain how water and gas saturation affects acoustic velocities 

in porous rocks (Gregory, 1976; Domenico, 1977; Murphy, 1984). Theoretically, the 

variation of the compressional and shear wave velocities with water-gas saturation has 

been calculated by Domenico (1977), using Biot’s theory (1956) and Geertsma (1961) 

equations. The calculated results are not consistent with laboratory measurements of 

ultrasonic velocities as a function of water-gas saturation. The inconsistency between the 
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theoretical model and the measurement model is related to many reasons like dispersion 

mechanisms and attenuation, fluid phase distribution, effective fluid bulk moduli, and 

different environmental factors like pressure, temperature, and age. 

Fitting the curves of water-gas saturation versus elastic velocities theoretically or 

empirically helps in using the right model in interpretational applications, like applying 

fluid substitution modeling at sonic frequencies, correcting for the physical dispersion 

mechanism (velocity dependent frequency) that could happen in the borehole invasion of 

the sonic well-logs, enhancing different reservoir models like saturation versus bulk and 

shear moduli, and using the ultrasonic velocities versus saturation models to understand 

the behavior of elastic velocities at different frequencies (e.g., sonic, seismic).  

 

1.2 Objectives 
 

The objectives of this thesis are: 

• To fit the ultrasonic laboratory compressional (P-wave) and shear (S-wave) 

velocities versus water-gas saturation curves by using high frequency Biot’s 

equations for different types of sedimentary rocks of different porosities.   

• To model and interpret ultrasonic laboratory velocity measurements in partially 

gas-saturated rocks reported in the literature, and compare them with our physical 

model in order to compensate for theoretical and experimental errors. 

1.3  Layout of thesis   

We will talk about some wave propagation theories in porous media. Gassmann’s 

equations will be introduced with some details on calculating elastic moduli parameters. 

In chapter 3 we will talk about experiments and laboratory measurements, how elastic 
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wave velocities are measured in the lab, and the techniques in establishing the saturation 

inside a rock sample. A general idea of attenuation and dispersion in porous media will 

be presented in chapter 4. Our method of ignoring the squirt flow dispersion mechanism 

is introduced in chapter 5. Results and interpretations of laboratory data are presented in 

chapter 6. All the data were taken from the geophysical literature. Conclusions and a 

discussion will be introduced in chapter 7.  
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   Chapter 2   THEORY 

  In this chapter we will introduce Gassmann’s equations and Biot’s relations. We 

will present some mathematical calculations of elastic moduli and some theoretical 

interpretations.  

2.1  Wave propagation theories in porous media 

2.1.1     Gassmann’s relations  

There are many theories of wave propagation in porous media in the geophysical 

literature. Gassmann’s equation (1951) is used to predict velocities in porous media with 

mixed fluids like water-gas or water-oil. When the seismic wave passes through a porous 

saturated rock, the pore pressure tries to resist the compression of the seismic wave. The 

resistance of the volumetric compression is called the bulk modulus (K). Gassmann’s 

equations calculate the increase in the saturated bulk modulus (Ksat) of the rock.  

Gassmann’s relations relate the porosity (φ ), the bulk modulus of the mineral 

matrix ( oK ), the bulk modulus of the rock frame ( *K ), and the bulk modulus of the pore 

fluids (Kfl) to the saturated bulk modulus of the same rock (Ksat). This is shown in 

Equations (1), (2), and (3): 
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where  K
* 

= effective bulk modulus of porous rock frame or skeleton, 

Ksat = effective bulk modulus of the rock with pore fluid, 

Ko   = bulk modulus of mineral (grains), 

Kfl  = effective bulk modulus of pore fluid, 

           φ   = porosity, 

           *µ  = effective shear modulus of rock skeleton, and 

           satµ = effective shear modulus of rock with pore fluid. 

Equations (1) and (2) are the same but in different algebraic order.   

2.1.1.1      Gassmann’s assumptions 

 
Assumption (1): Gassmann’s equations are valid only at low frequencies less than 

few hundred Hertz (long wavelength). Physically this means there is enough time for the 

pore pressure to equilibrate through the pore space. The length range of pressure 

equilibrium is larger than the pore sizes and less than the wavelength (λ) of the seismic 

wave. So for high frequencies like ultrasonic frequencies (1 MHz), Gassmann’s equations 

are not applicable, and therefore we should use Biot’s high frequency equations (1956).   

Assumption (2): Gassmann’s theory assumes that the rock is isotropic and homogeneous; 

physically this means the rock has the same physical properties in all directions. 

However, Brown and Korringa (1975) extended Gassmann’s relations to include 

anisotropy properties. Assumption (3): all pores are communicating, which means the 

rock has a high connected porosity, and there are no isolated pores in the rock. This 

assumption refers to the full relaxation situation of the pore fluid when the wave passes 

through the rock. The connected pores are in relation to the wave frequency. Because of 
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the first assumption that includes an infinite wavelength (zero frequency), most rocks can 

match this assumption, especially unconsolidated rocks with high porosity and 

permeability. Velocities measured at high frequencies, like sonic logs and laboratory 

measurements usually are higher than those calculated with Gassmann’s equations. 

Assumption (4): there are no chemical or physical reactions between solids and fluids, 

and pore fluid is coupled strongly to the frame of the rock. In fact, rocks saturated with 

fluids soften or harden the rock frame. Assumption (5): the rock system is closed; there is 

no fluid flow in or out of the surface of the rock.  Assumption (6): the fluids that fill the 

pores have zero viscosity. Like Assumption (3), this is in relation to the wavelength in 

order to emphasize that pressure equilibrium of pore fluid will be complete. High 

viscosity fluids are not easy to equilibrate. In fact, most fluids have finite viscosity; and 

most waves have finite wavelengths. There is a big difference in bulk and shear moduli 

between fluids and solids, and for the previous reasons a relative motion between fluids 

and solids will occur; therefore, waves are dispersive. This is one of the reasons why 

laboratory velocity measurements are higher than those calculated with Gassmann’s 

equations at high water saturation.  

Gassmann’s theory also considers that the shear modulus is not affected by pore 

fluid, and there is no assumption for the pore geometry. However, the Kuster-Toksoz 

(1974) theory considers the shape, size, and distribution of cracks in the rock.  

2.1.1.2   Using Gassmann’s equations 

 
In isotropic rock, the bulk modulus (K) or incompressibility is defined as the ratio 

of hydrostatic stress to volumetric strain. Shear modulus (µ) is defined as the ratio of 

shear stress to shear strain.  
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Gassmann’s equations can calculate the effective bulk moduli of saturated rock 

from the dry frame (skeleton) moduli and vice versa. Usually the bulk modulus of rock 

skeleton is unknown, but we can calculate the bulk modulus of the fluid saturated rock 

(Ksat) if we know the compressional-wave velocity (VP), the shear-wave velocity (VS), 

and the bulk density ( bρ ) of the total rock at full water saturation from the following 

equations: 

b

satsat
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where  maρ  = density of rock matrix (grains), 

flρ  = density of the pore fluid, and 

φ    = porosity, which is the ratio of pore space to the total volume of the rock. 

The density of pore fluid is related to water saturation and to the density of the different 

mixed fluids in the rock by the following equation: 

( ) wBRwHYDfl SS ρρρ +−= 1                         (9)                      

where HYDρ   = density of hydrocarbons, 

BRρ   = density of brine, and 
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wS    =   water saturation. 

Gassmann’s equations have many parameters to calculate the effect of fluids on seismic 

velocities. Usually laboratory measurements help to estimate the bulk and shear moduli 

of the rock frame, grain density, porosity, and fluid bulk modulus. When the lab data are 

not available, we should use well log data, for example, estimating the porosity from 

neutron or sonic logs. Or, we can use empirical equations and effective media theories, 

since most rocks consist of more than two materials.  

2.1.1.3.   Estimating (Kmatrix) Voigt, Reuss, and Hill moduli models 
 

We can calculate the effective bulk modulus of a mineral matrix using the 

application of Voigt-Reuss-Hill (Mavko 1998). Three things should be known: the 

porosity, the bulk moduli of the different phases, and the volumetric percentage of every 

individual mineral. The medium is assumed to be isotropic, linear, and elastic.  

 Voigt (1928) proposed the stiff upper bound of the effective elastic moduli. The 

upper bound describes an isostrain situation, because the strain is equal on all the layers, 

but the stress is different, as shown in Figure (1a).   

                           σ                                                                    σ           

                                                                                                                            

                                              

 

 

 

 

 

             

                           σ 

                                                                           
                (a) Isostrain situation (Voigt)                                  (b) Isostress situation (Reuss) 

 

      Figure (1): Sketch showing the stress-strain situation in effective media. 

 

σ Stiff Soft 
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The Voigt effective bulk modulus can be calculated from the following relation: 

∑
=

=
n

i

iiVoigtmatrix KFK
1

,                    ,                                                                                       (10) 

 

where  Fi = the volumetric fraction of the ith component, and 

Ki = the elastic bulk modules of the ith component.  

Voigt’s upper bound is used to calculate fluid and matrix properties of a linear mix of 

materials. 

 Reuss (1929) proposed the soft lower bound of the effective elastic moduli. The 

lower bound describes the isostress situation, because Reuss assumed that stress applied 

on materials is the same, but strain is different. Every layer shows a different deformation 

as shown in Figure (1b). The Reuss effective bulk modulus can be calculated from the 

following relation:  

1
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ussRmatrix
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K ε              ,                                                                                 (11)                   

where  Fi = the volumetric fraction of the ith component, and  

Ki = the elastic bulk modules of the ith component.  

Reuss’ lower bound is used to calculate the fluid and matrix properties of a harmonic mix 

of materials. Reuss’ lower bound describes the effective moduli situation of mixed 

materials of solids and fluids like gas and water.  

Hill (1952) proposed his bound by taking the average between Voigt and Reuss in 

order to get a better estimation of the effective bulk modulus of the rock matrix. 
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2.1.1.4     Estimating (Kfluid)-Wood’s pore fluid modulus model 

Wood’s equation (1955) can estimate the effective bulk modulus of the pore fluid 

(Kfluid). Wood’s equation relates the velocity to the pore fluid bulk modulus assuming zero 

shear modulus using Equation (12). Wood used the Reuss fluid compressibility average 

to calculate the effective pore fluid bulk modulus using Equation (13), and (14): 

,fluid R uss

P

sat

K
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=             ,                                                                                                                                      (12) 

where PV  = compressional wave velocity, 

           ussRfluidK ε, = Ruess fluid compressibility average, and 

           satρ = saturated rock bulk density. 
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where MatrixK  = bulk modulus of the rock minerals, 

           WaterK  = bulk modulus of water under reservoir conditions, 

           HYDK = bulk modulus of hydrocarbon under reservoir conditions, 

           φ = porosity, and  

           wS = water saturation. 

           ( ) ( )φρφρφρρ whcwwmasat SS −++−= 11             ,                                                  (14) 

where maρ = density of the rock minerals, 

           wρ = density of water under reservoir conditions, and  

           hcρ = density of hydrocarbon under reservoir conditions. 
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Gassmann’s relation assumes that the pores are connected, and refers that the fluid is 

uniformly distributed, so the Reuss average is more applicable to calculate the effective 

fluid bulk modulus through the following equation:   
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If the fluid distribution in not uniform, then we use the Wood-Voigt equation to calculate 

the stiffer effective bulk modulus of pore fluid from the following equation:  

HYDwWaterwMatrixVoigtfluid KSKSKK ))(1())(()1(, φφφ −++−=           .                     (16) 

2.1.1.5.   Estimating (K
*

frame)  

 Usually the bulk modulus of the skeleton is unknown; there are many empirical 

equations to estimate frame bulk modulus. Frame moduli are different from the dry 

moduli. A frame modulus is the modulus measured at an irreducible amount of water 

saturation, so the wetting fluid is considered to be part of the rock’s frame.  

 In Gassmann’s equation the wetting frame bulk moduli should be used; 

otherwise, the dry moduli will give very high velocities. So if the saturated bulk 

modulus is known from Equation (4), based on the measured velocities, we can calculate 

the frame bulk modulus from Equation (17): 
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Where *K  =   effective bulk modulus of porous rock frame or skeleton, 

Ksat =   effective bulk modulus of the rock with pore fluid, 

oK  =   bulk modulus of mineral (grains), 
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Kfl  =   effective bulk modulus of pore fluid, and 

φ  = porosity.  

The dry bulk modulus is related to the matrix bulk modulus through Biot’s coefficient 

(B), which has values which depend on the porosity of the rock. If the rock is 

consolidated, the value of B is zero. If the rock is unconsolidated, the value of B is 1. So 

the range varies from zero to one. The porosity and the bulk modulus of grains should be 

known.  One of the most common experimental methods has been to approximate B as a 

function of porosity Equations (18), (19), (20), and (21).  

matrixframe KBK )1( −=                                                                                             (18) 
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B −=                                                                                                        (19) 

When φ = 0  matrixframe KK =  
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10 ≤< B                                                                                                                    (21) 

There are many equations to estimate Biot’s coefficient B, like those found in Geertsma 

(1961), Krief (1990), Nur et al. (1991), and Mavko et al. (1998).  

The dry bulk modulus (K
*
) also can be estimated by using the Greenberg-Castagna 

(1992) inversion of Gassmann’s equation: 

matrixframe bKK =           ,                                                                                          (22) 
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)1(1 −+=
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Another method to calculate K
*
 is to use Poisson’s ratio of the dry rock when the 

compressional and shear velocities are known. Solutions were provided by Gregory 

(1977). When the frame bulk modulus is calculated, it is possible to calculate the other 

moduli of the rock saturated with mixed fluids. As mentioned before, Gassmann’s 

equations are applicable only at low frequencies. 

  Gassmann’s equations assume that fluid is distributed homogeneously, but 

Gassmann’s relations give unrealistic results of the heterogeneous distribution of mixed 

fluids (Domenico, 1977). The calculated velocities in partially saturated rocks using 

Gassmann’s equation agree with low frequency data. Murphy (1982) proved that 

Gassmann’s equations agree with the laboratory measurements at low frequencies. On the 

other hand, Gassmann’s equations do not match the high frequency laboratory velocity 

measurements of Gregory (1976) and Domenico (1976). So for ultrasonic and sonic 

velocities, Biot-Geertsma equations should be used to estimate velocities in partially 

saturated rocks.  

2.1.2   Biot-Geertsma relations  

 
Biot (1956) developed a wave propagation theory for porous media. Biot assumed 

that the rock is isotropic, the wavelength of the passing wave is much larger than the pore 

size, and the grains of the rock have the same bulk and shear moduli.  Biot’s theory 

describes the relationship between the fluid phase and the solid (grains) of the rock by 
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taking into account the motion of the fluid and its viscosity. Also Biot considered all 

frequency ranges, from the zero frequency limits which are equal to the Gassmann 

equation limits, to the high frequency limits (infinite) which are relevant to ultrasonic 

laboratory measurements. Geertsma and Smit (1961) expressed Biot’s equations through 

mathematical expressions that relate the compressional and shear velocity to its 

wavelength (frequency) at both zero frequency and infinite frequency. For zero frequency 

the compressional and shear wave velocities are given by: 
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where bC = compressibility of the rock frame, 

sC = compressibility of the solid minerals, 

fC = compressibility of the pore fluid, 

bρ = rock total bulk density, 

fρ = density of the pore fluid, 

φ = porosity, 

µ = shear modulus of the rock frame, and  

β = the ratio sC / bC . 

For infinite frequency the compressional and shear wave velocities are given by 

Equations (28), and (29). 
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where   bC = compressibility of the rock frame, 

  sC = compressibility of the solid minerals, 

  fC = compressibility of the pore fluid, 

  bρ = rock total bulk density, 

  fρ = density of the pore fluid, 

  φ = porosity, 

  µ = shear modulus of the rock frame, 

  β = ratio sC / bC , and 

  κ = mass coupling factor between the fluid and solid. 

The difference between the zero frequency equations (26, 27) and the infinite frequency 

equations (28, 29) is the mass coupling factor (κ ), which has values from one (κ =1), 

which means no coupling between fluid and solid, to infinite (κ = ∞), which means a 

perfect coupling between fluids and solids.  
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The situation at the complete mass coupling factor gives the zero frequency Equations 

(26) and (27); they are equal to Gassmann’ relations: 

gwwwf CSCSC )1( −+=           ,                                                                          (30) 

 

where fC = fluid compressibility, 

wC = compressibility of water, 

gC = compressibility of gas, and 

wS = water saturation.  

Equation (30) represents the fluid compressibility as the fluid distributed homogenously, 

which is the Ruess average. If the fluid distribution is segregated, then the inverse of 

Equation (30) should be used which, is the Voigt average:   
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2.2     Previous theoretical interpretations  

The changing in elastic wave velocities with fluid saturation was calculated 

theoretically by Domenico (1974) using Biot (1956) and Geertsma (1961). The shape of 

the resulting model is shown in Figure (2).  

Theoretically, the total shear modulus ( satµ ) is assumed to be independent of 

saturation and equal to the dry shear modulus ( Dryµ ). 
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                    100% Gas                                Saturation                                                      100% Water 

0                                                                                            1 
Figure (2): Changing of compressional and shear velocities with water saturation as calculated 

theoretically by Domenico (1974).   
      

There is a nonlinear increase in compressional wave velocity with water 

saturation. Starting from zero-water saturation or full-gas saturation, compressional wave 

velocity decreases with increasing water saturation because density increases; from 

Equation (4), velocity is inversely proportional to bulk density.  At very high water 

saturation the fluid bulk modulus controls the effect in changing the value of 

compressional velocity more than bulk density.  

The value of compressional wave velocity increases strongly until it reaches full- 

water saturation, also known from Equation (4); the saturated bulk modulus is 

proportional to the compressional wave velocity.  When the fluid bulk modulus increases, 

the saturated bulk modulus increases, and results in increasing the compressional wave 

velocity.  The shear velocity decreases linearly with water saturation because the bulk 

density increases; from Equation (6), bulk density is inversely proportional to shear 

velocity.  
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Chapter 3 EXPERIMENTS AND LABORATORY MEASUREMENTS 

In this chapter we will introduce a general idea about the laboratory 

measurements reported in the literature. Also we will talk about some measurement 

techniques in establishing the fluid saturation, and some fluid distribution models.   

3.1       Laboratory velocity measurement techniques 

 Measuring wave propagation velocities in partially saturated rocks depends on 

some important physical parameters and mechanisms like wave frequency, velocity 

dispersion, viscosity, wave attenuation, and density.  

The wavelength scale varies between different scale measurements. For example, 

in seismic measurements the frequency scale is less than 200
 
Hertz; for sonic log 

measurements the scale is around 10 - 50 Kilohertz = 10 
4
 – 50 

4 
Hertz; for ultrasonic 

laboratory measurements the scale is around 1 Megahertz = 10 
6
 Hertz. The majority of 

laboratory methods that measure elastic velocities use some kind of electromechanical 

transducers for transmitting and receiving elastic waves. 

 Figure 3 shows the interactions between a transducer and elastic waves. 

Velocities are calculated by dividing the length of the rock sample by the recorded travel 

time of the propagating wave through a rock sample between the transmitting and 

receiving transducers. The source and the receiver in a transducer consist of crystal 

materials like quartz or ceramic materials like titanate or zirconate titanate. The 

frequencies are controlled by the size of the rock sample and the size of the mineral 

grains. Most ultrasonic velocity measurements use frequencies from 0.2 to 1 MHz. The 

first arrival of the recorded signal is measured and then the velocity is calculated. The 

signals are created by the broadband high-voltage electrical pulses. The velocity 
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measurements were described in detail by (Gregory, 1967, 1976, 1977; Domenico, 1967, 

1977). 

 

                                            ELECTROMECHANICAL TRANSDUCER 

                            P-Wave                                                                                S-Wave  

                                                      

                                            Direction of Propagation 

                      

                  Not Polarized                                                            Plan Polarized  

PARTICLE MOTION OF COMPRESSIONAL AND SHEAR WAVES 

Figure (3): The action of a transducer and the particle motion of elastic waves. 

 

Figure 4 presents a general diagram of electronic devices used in measuring ultrasonic 

compressional and shear wave velocities. Four crystal transducers are connected to the 

rock for passing on and receiving the elastic waves. Two transducers are for 

compressional waves, and the other two are for shear waves. The switches control both 

compressional and shear transducers. The pulse and time signal generator creates an 

Motor 

Mechanical motion communicated 

to 

 Medium of propagation 

Electrical 

Generator 

Electrical 

Crystal deformed by electrical field; 

Crystal dimensions change 

 

Response Impulse 

Crystal deformed mechanically; 

deformation causes electric field 
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electrical pulse that has a width which varies from 2 to almost 10 µsec. The passing 

signal is enlarged by the power amplifier and then displayed on the oscilloscope.  

 

 
 

 
Figure (4): Diagram of electronic tools used in measuring ultrasonic elastic wave traveltime. 

 

Figure 5 shows the timing pulses of both compressional wave and shear wave as 

displayed on the oscilloscope. The traveltime of both compressional waves (∆TP) and 

shear waves (∆TS) is the difference in time of the wave passing between the transmitting 

and receiving transducers. 

 

 

Taken from Domenico, 1976 
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Figure (5): Traveltimes as displayed on Oscilloscope. 

 

Figure 6 shows a general idea about the tool used for sample loading and injecting 

fluids under different pressure values that could reach 5000 psi, which is equal to the 

same amount of pressure at a 10,000 foot depth. The pore fluid is injected through a 

valve, and the pore pressure is controlled by a regulated constant displacement pump. 

  There are many techniques for controlling the fluid saturation from full-water 

saturation to full-gas saturation. Generally, full-water saturation is obtained by using the 

imbibition technique, which is the displacement of air by water, where as full-gas 

saturation is obtained by using the drainage technique, which is the displacement of water 

by air by evaporating the water. The distribution and size of injected fluid into a rock 

sample can be determined by X-ray absorption method. This experimental method was 

described by Domenico (1976), and Gregory (1977). In general, velocities are measured 

at various pressure values, and at room temperature (25°). 

Taken from Domenico, 1976 
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Figure (6): Equipment for injecting the water and gas fluid into the rock sample. 

 

3.2       Previous experimental and theoretical interpretations  

 Many laboratory experiment results have been published in the geophysical 

literature (Gregory, 1976, 1977; Domenico, 1976, 1977; Murphy, 1984; Knight and 

Nolen-Hoeksema, 1990).  The experimental results are used to estimate the influence of 

gas and water saturation on direct hydrocarbon indicators in stacked seismic data like 

bright spots, since a small amount of gas reduces the velocity and strongly increases the 

reflection coefficient.  Laboratory studies explained the variation of elastic physical 

properties with fluid saturation, and some measured results from Wyllie (1956) and 

Murphy (1982) are similar to the theoretical results of Domenico (1974) shown in Figure 

2. 

Taken from Domenico, 1976 



 30

 On the other hand, many laboratory velocity measurements exhibit higher values 

with increasing water saturation than those calculated theoretically by Biot-Gassmann 

relations. Some of these laboratory results were obtained by Wyllie et al, 1956; 

Domenico, 1976, 1977; Gregory, 1976, 1977; Knight and Nolen- Hoeksema, 1990.  

3.2.1    Interpreting the effect of microscopic fluid distribution 

Domenico (1976, 1977) studied the velocity variation with gas-water saturation in 

two unconsolidated sand samples. Experimentally the saturation was established by using 

two different techniques; the flow technique and the imbibition technique. The flow 

technique depends on injecting mixed fluids of gas and water. The gas and water are 

mixed together before the injection. At low water saturation, the gas volume is large. Gas 

fills the low aspect ratio pores like cracks while water fills the high aspect ratio pores like 

spheres or rounded pores. Figure 7 shows the distribution of gas-water fluid in the flow 

technique. The pores have different aspect ratios. The gas fills the crack first as the Sw 

increases, and that is why the model called crack preference.   

100% Gas                             Increasing water saturation                                                      100% Water 

Figure (7): Crack preference distribution model of three different aspect ratio pores, Gas = gray, Water = 

blue. 

 

The aspect ratio (c=a/b) represents the shape of a single pore seen in (Figure 8). The 

aspect ratio is defined by the ratio of the length of minor semi axis (a) to the length of the 

major semi axis (b). 

 



 31

 

Figure (8): Aspect ratio of a spheroid pore 

The distribution of water and gas varies between different pore shapes, because water is 

considered a wetting fluid with higher viscosity and density than gas, which is a non-

wetting fluid. When the amount of gas increases in the mixed fluid before the injection, 

the water starts to fill the low aspect ratio like cracks, while the gas fluid fills the large 

pores space; this situation is called the spheroid preference.  

Figure 9 shows the distribution of the mixed fluid when the gas has higher volume 

than the water; and this model is also called the segregated distribution model. 

100% Gas                                  Increasing water saturation                                                 100% Water 

Figure (9): Segregated distribution or spheroid preference distribution model of three different aspect ratio 

pores.  Gas = gray, Water = blue. 
 

Measured velocities at high water saturation under the flow technique are higher than 

those computed by Biot-Geertsma equations. The X-ray measurements also showed 

nonuniformity of gas distribution at water saturation higher than 70%.  

Domenico used the imbibition technique in order to improve the uniformity of gas 

fluid at high water saturation. The imbibition technique depends on injecting gas fluid 

first until gas fills the pores; then the rock sample is injected only with water. The fluid 

pressure was controlled in a way to let the gas turn to solution.  

X-ray measurements showed the uniformity of water saturation as shown in 

Figure 10; gas bubbles are uniformly and homogeneously distributed in water.  

a 

b 
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100% Gas                                          Increasing water saturation                                        100% Water 

Figure (10): Uniform distribution model of three different aspect ratio pores. Gas = gray, 

 Water = blue. 
 

Domenico explained the difference in wave velocities between the measurements 

and the theoretical calculations by using the idea of microscopic distribution of the fluid 

phase inside the pores and the geometry of the fluid phase. He discovered that when the 

mixed fluids of gas and water in a pore space were uniformly distributed, there was an 

agreement between the measured and the calculated velocities.  Domenico calculated the 

compressional and shear-wave velocities using the Biot-Gassmann equations modified by 

Geertsma (1961) (Equations 28 and 29). The calculated velocities were modeled for 

different values of the frame-fluid coupling factor (к). Fluid compressibility ( fC ), was 

calculated using the Wood-Ruess (Equations 13 and 30), which represent the weighted-

by-volume average of gas compressibility plus water compressibility. The Wood-Ruess 

average assumes a uniform, homogeneous distribution. Domenico (1977) found that both 

measured P-wave and S-wave velocities are near the theoretical curve for a unity 

coupling factor (к =1) at low and medium water saturation. However, at high water 

saturation, the measured velocities do not match the model of the Wood-Ruess average. 

Domenico assumed that at high water saturation the distribution of gas and water is not 

uniform anymore, and the fluid compressibility should be the inverse of the weighted-by-

volume average; this was shown in Equations (15) and (16). Domenico concluded that 

effective fluid compressibility has values between the Reuss average, which is the lower 
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bound (gas and water have uniform distribution), and the Voigt average, which is the 

upper bound (gas and water have segregated distribution). 

Murphy (1982) experimentally verified the uniform distribution model (lower 

bound) with the low frequency data on Massilon Sandstone. At high frequency the lower 

bound model cannot clarify the ultrasonic measurements, especially at high water 

saturation.  

3.2.1.1 Physics and mathematics of uniform saturation 

            At low frequency and uniform distribution of a gas-water fluid, as a long 

wavelength passes through the saturated rock, it compresses the fluid phase, and an 

increase in pore pressure occurs in each pore. Because the wavelength is long, the pore 

pressure can equilibrate during the wave period. In the uniform distribution, the 

relaxation time (τ) is almost equal to the size of the fluid phase (L) over the diffusion 

constant (D), shown in Equation (32): 

D

L2

≈τ          ,                                                                                                             (32) 

where τ = the relaxation time, 

L = patch size or the spatial scale of fluid phase, and  

D = diffusion constant.    

The spatial scale ( L ) can be expressed in terms of the frequency (ƒ) of the passing wave, 

and the diffusivity (D) seen in Equation (33): 

f

D
DL =≈ τ             .                                                                                          (33)                                                

The diffusion constant is given by the next relation: 
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η
flkK

D =         ,                                                                                                          (34)                                                                                                                             

where k = permeability, 

flK = fluid bulk modulus of the viscous fluid, and 

η = dynamic viscosity of the liquid. 

By substituting Equation 34 into Equation 33, the distance that pore pressure can 

equilibrate is given by Equation (35): 

ηf

k
L

flΚ
≈          .                                                                                                      (35)                                                                                 

When the patches are small or the frequency is low, the pore pressure between the gas 

and water phases can be equilibrated. This is an isostress situation, because the pore fluid 

phase undergoes the same amount of pressure. The viscosity (η) and the permeability (k) 

of the fluid have an important impact on the value of (L). There are many relations 

similar to the previous equations reported in the geophysical literature such as White 

(1975); Akbar et al. (1994); Gist (1994); Mavko et al. (1997). At low frequency, the Biot 

and squirt flow mechanisms can be ignored (Mavko and Nur, 1975; O’Connell and 

Budiansky, 1977; Mavko and Jizba, 1991; Gist, 1994).  At long wavelengths, there is 

time for the fluid pressure inside the pores of different aspect ratios to equilibrate. So at 

low frequencies, Biot’s dispersion mechanism does not have that much effect on 

velocities compared to the effect at high frequencies. (The Biot and squirt mechanism are 

explained in Section 4.2. 

 Domenico (1976) indicated that the heterogeneous distribution of the fluid phase 

causes the difference in wave velocities between the measured and computed velocities at 
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high water saturation. The heterogeneity in saturation happens because the rock has 

variation in wettability, permeability, clay content, and pore shapes which affects the 

patch size or the fluid phase dimension.  

The variation in saturation is called patchy saturation, and it has been considered 

theoretically by Endres and Knight (1991); Mavko and Nolen-Hoeksema (1994); Akbar 

et al. (1994); Knight et al. (1995); Packwood and Mavko (1995).  The patchy saturation 

model was considered experimentally by Knight and Nolen-Hoeksema, (1990).  

In patchy saturation, the fluid is distributed in patches of fully gas-saturated and patches 

of fully water-saturated areas. Figure 11 shows how patchy saturation is distributed inside 

the pores of different aspect ratios. 

100% Gas                                             Increasing water saturation                                      100% Water 

Figure (11): Patchy distribution model of three different aspect ratio pores. Gas = gray, Water = blue.  

3.2.1.2 Physics and mathematics of patchy saturation  

           In patchy saturation, it is assumed that the porosity, the rock minerals, and the dry 

bulk modulus are homogenous. It is also assumed that the differences in velocities and 

moduli are caused by changes of pore fluid.  

When the wavelength (λ) is long (low frequency) or when the patch size is not 

big, there is enough time for the produced pore pressure to equilibrate and diffuse 

through the wave period, seen in Equation (36):  

 
ηf

k
L

flΚ
<           .                                                                                                    (36) 
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So the patches are relaxed, and this is the same as in the case of uniform saturation. 

However, when the wavelength (λ) is short (high frequency) or if the patch size is big, 

there is not enough time for the produced pore pressure to equilibrate and diffuse through 

the wave period, shown by Equation (37): 

ηf

k
L

flΚ
>            .                                                                                                    (37) 

In this situation the patches are not relaxed, which means the effective bulk modulus is 

higher than the effective bulk modulus of the relaxed patches. So patchy saturation gives 

stiffer rock and higher velocities than uniform saturation. Also the Biot (1965) and squirt 

mechanisms (O’Connell and Budiansky, 1977) generate higher velocities at high water 

saturation. 

Patchy saturation can be modeled under these three assumptions:  

1) The shear modulus does not change with saturation; 2) The spatial scale size of the 

fluid is smaller than the wavelength; and 3) The patches should be of a size that cannot 

let the fluid pore pressure equilibrate through the wave period. 

Under the previous assumptions, where the shear modulus is the same for all 

different patches, the effective bulk modulus of rock having patches of different shapes 

can be calculated by Equation (38) (Hill 1963): 
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where n = the number of patches with various fluid phase, 

ix = the volume portion of the ith patch, 
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iK = the bulk modulus of the rock fully saturated with the ith fluid, and 

µ = the shear modulus of the rock.  

 If the rock consists of two fluid phases like gas and water, Equation (38) can be 

expressed in terms of water and gas saturation by Equation (39): 
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where gasS = gas saturation, 

gassatK − = rock bulk modulus saturated with gas, 

wS = water saturation, 

wsatK − = rock bulk modulus saturated with water, and 

 µ = the shear modulus of the rock.  

The saturated bulk moduli are calculated using Biot-Gassmann relations. The patchy 

saturation model ignores the effect of pore geometry. Pore geometry effects can exist and 

cause segregated saturation, which is not correctly modeled by using patchy saturation 

equations, especially at high water saturation and ultrasonic frequencies, for example 

(Endres and Knight, 1989; Castagna and Hooper, 2000).  

Domenico (1977) found that the Voigt average fluid modulus is more applicable 

at high frequency and high water saturation. Experimentally, Endres and Knight (1989) 

verified the Domenico segregated distribution model by using the Kuster and Toksoz 

model for a variety of aspect ratio.  The segregated model is more likely to happen at 

high frequency, and causes the shear modulus to vary with saturation. The effective fluid 
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bulk modulus of the segregated model is calculated using Equation (16) or (31). In any 

reservoir, the distribution of saturation is not known, and distribution varies from uniform 

(lower bound) to segregated distribution (upper bound) depending on many factors 

related to rock properties, such as permeability, fluid density and other factors like 

drilling, production, water injection rate, and gravity effects.  

Mavko and Mukerji (1998) modeled low frequency data from Murphy (1982) on 

Massilon sandstone of porosity (φ =0.23).  The results are in great agreement with the 

uniform effective fluid model (Reuss bound).  However, the Mavko patchy model does 

not match Domenico’s high frequency data on Ottawa unconsolidated sand. Also, the 

high velocity values at high water saturation are caused by the ultrasonic dispersion 

mechanism.  
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Chapter 4   ATTENUATION AND DISPERSION MECHANISMS IN 

FLUID-SATURATED ROCKS  

In this chapter we will define attenuation and dispersion physically and 

mathematically; we also introduce macroscopic and microscopic dispersion mechanisms 

in partially saturated rocks.    

4.1       Introduction and definitions  

Attenuation is an important physical property that occurs in different materials 

like elastic solid and viscous materials. Visoelatic materials behave as elastic solids on 

short time range and as viscous fluids on long time range, thus exhibiting attenuation. 

Understanding how the attenuation mechanism is related to water saturation and pore 

shape can help in the interpretation of borehole sonic logs. Physically, attenuation is a 

dimensional measure of energy loss as a wave propagates through a scattering medium. 

The energy loss is caused by the motion between the pore fluid and the solid part of the 

rock, and also by the friction between the grain contacts, and both friction types cause the 

energy to convert to heat, which is physically called absorption. 

 Many studies have been done measuring attenuation in fluid-saturated rocks 

(Biot, 1956; White, 1965; Winkler, 1979; Murphy, 1982). Murphy (1982) proved that 

attenuation in very dry rocks is independent of frequency. However, attenuation is 

strongly dependent on frequency in fluid-saturated rocks. It is obvious that pore fluids 

dominate the energy loss in porous rocks. Mathematically, attenuation is expressed by the 

following relations, Equations (40) and (41) from (Sheriff 2002):  

axeAA −= 0           ,                                                                                                        (40) 
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where A = wave amplitude, 

0A = wave initial amplitude,               

a = attenuation coefficient, and 

x = traveling distance. 

QV

f
a

π
=          ,                                                                                                            (41) 

f = wave frequency, 

Q = quality factor, 

V = elastic wave velocity, 

Q

1
= attenuation. 

The quality factor over the seismic frequency range is assumed to be constant. 

While in the laboratory frequency range, the quality factor is frequency-dependent. 

Murphy (1982), proved the sensitivity of attenuation in partially gas- and water-saturated 

rocks.  Pore fluid in laboratory measurements controls the attenuation mechanism. 

Frequencies are different at different scales; Figure 12 shows a frequency spectrum of 

different scales. 

 

EARTHQUAKES         EXPLORTION                   ECHO            BOREHOLE  LAB      

 

            SEISMIC                                           ACOUSTIC                                                ULTRASONIC 
 

Figure (12): Frequency spectrum of geoacoustic interest in Hertz unit. 
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The energy loss in partially saturated rocks is explained by either the break of hydrogen 

bonds between the water molecules and the surface of the silicate gains or by viscous 

dissipation as the tiny water layer trapped in capillaries moves when the capillaries are 

compressed by a stress cycle. As water saturation increases, another dissipative 

mechanism controls the attenuation; this mechanism is the pore fluid flow, and it is 

frequency dependent. Murphy (1982) observed that the dependence of velocities and 

attenuation on the amount of water saturation changes as water saturation increases. The 

attenuation is higher at full-water saturation. 

4.2 Biot’s local flow mechanism 

Biot (1956) was the first to consider the attenuation mechanism through the 

calculation of logarithmic decrements of compressional and shear-wave velocities. In 

high water-saturated porous media, he included the interaction between solids and fluids 

which is called local flow mechanism. Biot’s local flow mechanism is a large-scale flow 

(macroscopic scale) between a pore fluid and a solid. Local flow mechanism is caused by 

a compressing wave which creates pore pressure that forces a fluid to flow related to 

solid motion. Biot’s relations include the mass coupling factor that represents the effects 

of viscous friction and the inertial coupling forces between fluids and solids. Laboratory 

measurement observations (Murphy et al. 1982, 1986; Mavko and Jizba, 1991) predicted 

much larger velocities than those predicted by Biot, and the attenuation-dispersion 

magnitude was more likely to increase with increased frequency.    

(Murphy et al. 1982, 1986; Mavko and Jizba, 1991; Akbar et al., 1993; and Dvorkin and 

Nur, 1993) involved another attenuation mechanism called squirt-flow; this is a small- 

scale flow at grain scale (microscopic scale), for example, a single pore. 
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When a rock frame is compressed by an acoustic wave, a high pore pressure is 

generated in the small aspect ratio microcrack. At high frequency (short wavelength) 

there is not enough time for pore pressure to equilibrate during the wave period, and thus 

the rock bulk and shear moduli are stiffer. At partial saturation, the low bulk modulus of 

the fluid gas and water mixture generates different pore pressure gradients at different 

pore shapes. Higher velocities will be produced from the non-uniformity of the stress 

cycle in different pores. 
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Chapter 5   METHODS 

In this chapter we will introduce a simple method in order to ignore the effect of 

the squirt-flow dispersion mechanism at full-water saturation, and a new distribution 

model called patchy segregation. Many mathematical calculations will be described in 

detail for each step.   

5.1       Introduction  

Compressional and shear-wave velocities versus gas-water saturation curves have 

been modeled in different approaches using different fluid distribution models. Models 

fitting saturation curves with elastic wave velocities reported in the literature are 

incomplete and have some discrepancies between each other, for example, with Ottawa 

sand (Domenico, 1977; Mavko and Mukerji, 1998). Also in the literature correction for 

the dispersion and attenuation mechanisms is not complete and is applied to all types of 

porous rocks (Domenico, 1977; and Gregory, 1977). So the measured velocities are not in 

agreement with the theoretical models.  

The methods fitting ultrasonic velocities versus saturation curves we present in this 

thesis compensate for the experimental and theoretical errors and discrepancies found in 

published data in the geophysical literature.   

5.2 Curve fitting steps 

5.2.1    Using Biot-Geertsma equations  

The curve fitting begins by using Biot’s theory (1956) to calculate wave velocities 

in rocks which contain mixed partial fluid saturation. Geertsma (1961) extended another 

expression for compressional-wave velocity as a function of frequency. The Biot-

Geertsma relation is considered a reasonable starting point since Biot relations give a 
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good estimation of wave velocity in porous rocks containing more than one fluid. A 

mixed fluid can be considered as a single fluid phase with an effective fluid bulk 

modulus. The Biot-Geertsma equations given in Equations (42) and (43) are the same as 

Equations (28) and (29):  
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5.2.2     Using porosity separation 

The fitting method starts from matching the ending point of the curves (at full- 

water saturation), because there is high velocity dispersion at full water saturation. When 

the ending points of both models are matched, the data between the starting and the 

ending points can be fit correctly using fluid distribution models. The fitting methods 

begin with the measured compressional and shear wave velocities at full-gas saturation, 

and thus the starting point of the models is the same (with careful consideration of gas 

compressibility under pressure). 

Matching the end point of the theoretical model with the measured model can be 

done by applying the porosity separation method, which includes the separation of the 

total porosity into acoustically connected and disconnected parts. 
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 It is known that total porosity ( Tφ ) consists of connected pores ( cφ ) and disconnected 

pores ( Dφ ), shown by Equation (44): 

edDisconnectConnectedTotal φφφ +=           .                                                                       (44) 

The connected porosity represents the permeable pores that are connected with each 

other, while the disconnected porosity represents impermeable pores that are isolated and 

not connected with each other; this is shown in Figure 13. 

Permeability is a very important parameter because it controls the motion of fluid 

between pores. So by separating the total porosity of connected and disconnected pores, 

the effect of fluid motion can theoretically be controlled and give the freedom to control 

the theoretical model at full water saturation. Also the effect of Biot’s local flow can be 

ignored, and no correction is required for the dispersion effects, since the permeability is 

controlled by the separation of the total porosity.   

 

 

(Connected porosity) 

 

 

Permeable pore 
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(Disconnected porosity) 

Figure (13): Sketch of connected and disconnected porosity. 

5.2.2.1 Mathematics of porosity separation  

Porosity separation begins by using velocity-porosity empirical relations. 

Raymer-Hunt-Gardner relations (Mavko, 1998) will be used in order to estimate the 

velocities of rocks with given minerals and pore fluid. The Raymer et al. relations assume 

that the rock is isotropic, fluid-saturated, has uniform minerals, and is under high 

effective pressure. These relations work well for low- and medium-porosity rocks:  

PfluiddPmatrixdPsolid VVV φφ +−= 2)1(          ,                                                           (45) 

where PsolidV = compressional wave velocity of the solid rock, 

PmatrixV = compressional wave velocity of the matrix, 

PfluidV = compressional wave velocity of the fluid, and  

dφ  = disconnected porosity which is given by the difference between the total and 

connected porosity, Equation (46). 

CTd φφφ −=             .                                                                                                 (46) 

Impermeable pore throats 
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The disconnected pores can be considered as part of the solid minerals of the rock, and a 

new compressibility value of the solid grains should be used in the calculation of the 

effective bulk modulus.  

The calculated ( PsolidV ) from Equation (45) is used to compute the effective 

compressibility of the solid minerals (
*

sC ), which is a major parameter in Biot’s 

equation.  The effective compressibility of the solid minerals is given in Equation (47): 
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=                                                                            (47) 

where matrixρ  = density of the matrix (solid grains),  

PsolidV = compressional wave velocity of the solid rock, and 

matrixµ = shear modulus of the matrix (solid grains).  

 Using the effective compressibility of the solid minerals in Biot’s high frequency 

compressional wave velocity equation, we can control  the ratio of connected to total 

porosity, which is a variable number that can be changed until the best fit of the ending 

point can be achieved.  

5.2.2.2. Mathematics of bulk and shear modulus  

The effective bulk modulus (Ksat) in the Biot-Geertsma equation has many 

parameters, as given in Equation (48):   
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From Equation (48), ( cφ ) is the connected porosity, which is equal to the total 

porosity if there is no separation. When the total porosity ( Tφ ) is separated, the ratio of 

connected to total will be different and the disconnected porosity will be part of the solid. 

By using the effective compressibility of matrix solid, the disconnected porosity ( dφ ) can 

be isolated from the action of fluids in permeable pores. ( sC ) is the compressibility of the 

solid material. In quartz sand, the solid compressibility is equal to 0.027Gpa, ( *

sC ) is the 

effective compressibility of the solid material, (β ) is the ratio of the effective grain 

compressibility to the dynamic frame compressibility, (
*

sC / bC ), ( bρ ) is the rock total 

bulk density which is given by Equation (8), ( fρ ) is the density of the pore fluid which 

can be computed from Equation (9), and ( fC ) is the compressibility of the pore fluid 

which will be calculated differently according to the type of saturation distribution.  

 A ( fC ) of uniform distribution can be calculated by the Reuss average from Equation 

(30), while a ( fC ) of segregated distribution can be computed by the Voigt average from 

Equation (31). So the saturated bulk modulus will have two different values, one for 

uniform distribution, and the other for segregate distribution. The saturated bulk modulus 

of the simple patchy and patchy segregation is computed separately by Equation (39). (κ) 

is the mass coupling factor between the fluid and solid, it is a free parameter of the curve 

matching and has a value of one or more at ultrasonic frequencies. Different values of the 

mass coupling factor will be used in Biot’s equations in order to fit ultrasonic velocities 

versus water-gas saturation, to understand the effect of mass coupling on the shape of the 

curves and to compensate for the error in the assumed coupling factor value at ultrasonic 
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measurements. The effective bulk modulus calculation begins with the frame bulk 

modulus or the frame compressibility ( bC ). This is called the dynamic frame 

compressibility because it is computed from the dynamic measured compressional and 

shear-wave velocities by:  

)
3

4
(

1

22

spb

b

VV

C

−
=
ρ

        ,                                                                                     (49) 

where bρ = rock total bulk density, 

 pV = dynamic measured compressional velocity at full-gas saturation, and 

 sV = dynamic measured shear velocity at full-gas saturation. 

Before applying the velocity equations, we should identify the effective shear 

modulus. We assume that the dry and saturated shear moduli are equal, and the shear 

modulus is independent of saturation. Because the dynamic measured shear velocity is 

known, the shear modulus can be calculated from Biot shear-wave velocity at infinite 

frequency, with Equations (29) or (50), since Geertsma did not develop relations for 

shear-wave velocity:  
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        ,                                                                               (50) 

where SV = measured shear velocity at full-gas saturation,  

cφ = connected porosity,  

fρ = density of pore fluid, and 

bρ = rock total bulk density. 
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After the calculation of saturated bulk and shear moduli, the compressional and 

shear-wave velocities are computed from the following equations: 
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The uniform and fully segregated models are computed separately using different 

effective fluid compressibilities. The patchy model represents partially segregated model. 

5.2.3 Using the patchy segregation model  

         The fitting methods include the three theoretical models of fluid-phase distribution: 

the uniform, the segregated, and the simple patchy. The mathematical calculations of the 

three models were explained in Chapter 3. The new model in the fitting method is the 

patchy segregation model. The patchy segregation model represents the intermediate 

fluid distribution between the uniform and the fully segregated distribution. 

Mathematically, patchy segregation can be modeled by applying the same calculation as 

for the simple patchy, but the starting and ending points of the effective bulk moduli are 

different. The effective bulk modulus is given by the reciprocal average of moduli of 

shared regions of uniform and fully segregated distribution, as in Equation (53).    
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where gasS = gas saturation,  

uniformsatK − = saturated bulk modulus of the uniform region,  

wS = water saturation, 

sat segregatedK − = saturated bulk modulus of the segregated region, and 

effµ = effective shear modulus of the rock.  

Equation (51) is the same equation as that of the simple patchy (Equation 38) 

except that the starting and ending points are different; also the values of saturation at the 

starting and ending point are different. Physically, the patchy segregation distribution 

appears as patches of uniform distribution and patches of segregated distribution, as 

shown in Figure 14.  

    100% Gas                                                Increasing water saturation                                  100% Water 

 
Figure (14): Patchy segregation model of three different aspect ratio pores. 

 

The patchy segregation model can explain the transitional zones of measured data that do 

not fit in the three theoretical models of uniform, segregated, and simple patchy 

distribution. Applying the step just described, measured ultrasonic velocities versus 

saturation can be matched exactly with the theoretical models of Biot. The methods can 

be applied on different type of sedimentary rocks.  
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Chapter 6   MODELING AND INTERPRETING MEASURED AND 

COMPUTED ULTRSONIC VELOCITIES 

We have modeled six types of rocks at different porosity values from high, 

medium, and small. All the data are taken from published literature.   The interpretation 

of each velocity model will be described after modeling each rock separately. 

6.1       Introduction 

This chapter analyzes published geophysical laboratory data on different partially 

saturated rocks, as presented in Table (1). The published laboratory velocity data are 

compared, modeled and interpreted with our method.  

Table 1. Sample properties used in the calculation of the modeled velocities versus saturation curves. 

Samples 
(Reference) 

ƒ 

 

(kHz) 

 

φ  

k 

 

(mD) 

sρ  

 

(g/cm
3
) 

Ks 

 

(GPa) 

wρ  

 

(g/cm
3
) 

Kw 

 

(GPa) 

gρ  

 

(g/cm
3
) 

Kg 

 

(GPa) 

Ottawa 

Sands 
Domenico 

(1977) 

 

 

500 

 

 

0.383 

 

2400 

 

2.65 

 

37 

 

1.13 

 

2.49 

 

0.00129 

 

0.00014 

 

Glass Beads 
Domenico 

(1977) 

 

 

500 

 

0.383 

 

1900 

 

2.42 

 

37 

 

1.13 

 

2.49 

 

0.00129 

 

0.00014 

Boise 

Sandstone 
Gregory 

(1976) 

 

 

1000 

 

0.268 

 

1000 

 

 

2.65 

 

 

37 

 

1.00 

 

2.23 

 

0.00129 

 

0.00014 

Spirit River 

TGS 
Knight and 

Nolen- 

Hoeksema 

(1990) 

 

1000 

 

0.052 

 

0.001 

 

2.65 

 

37 

 

1.00 

 

2.23 

 

0.00129 

 

0.00014 

Sierra 

White 

Granite 
Murphy 

(1985) 

 

200 

 

0.008 

 

0.001 

 

2.65 

 

56 

 

1.00 

 

2.23 

 

0.00129 

 

0.00014 
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In Table 1, (ƒ) is the frequency of the acoustic measurements in kHz unit, (φ ) is the total 

porosity, (k) the permeability in milidarcy unit, ( sρ ) is the grain density in gram/cm
3
 unit, 

(Ks) is the grain bulk modulus in Giga-Pascal unit, ( wρ ) is the water density in gram/cm
3
 

unit, (Kw) is the water bulk modulus Giga-Pascal unit, ( gρ ) is the gas density gram/cm
3
, 

and (Kg) is the gas bulk modulus Giga-Pascal unit. All the values of fluid density and 

fluid bulk moduli are under standard conditions of temperature and pressure (20° C, 1 

atmospheric pressure). The pore fluid is (150,000) ppm NaI brine for glass beads and 

Ottawa sand, and distilled water for consolidated and low-porosity rocks.  

6.2       High porosity rocks, unconsolidated sand (Ottawa sand, and glass beads)  

Two samples of unconsolidated rock (Ottawa sand and glass beads) were used by 

Domenico (1977) to measure ultrasonic velocities at a frequency of 500 kHz. The 

imbibition and flow techniques were applied in injecting the fluid in order to create 

partial saturation. In the imbibition technique, the fluid has more uniform distribution 

than the flow technique, which exhibited heterogeneous distribution. The flow technique 

depends on mixing the water and gas before injection. The saturation in the Ottawa sand 

sample was created using the flow technique, while the saturation in the glass beads was 

created using both flow and imbibition techniques. The measured velocity data were 

taken from Domenico (1977). 

6.2.1    Ottawa sand  

 Domenico (1977) measured ultrasonic velocities in Ottawa sand, as shown in 

Figure 15, using the flow technique. Ottawa sand consists of very fine, angular, pure 

quartz grain with high porosity and permeability.  
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Figure (15): Scanning-electron-microscope photograph of Ottawa sand. 

 

The velocities were measured at different differential pressures (1500 and 4500 psi). The 

measured velocity data under a differential pressure of 1500 psi is listed in Table 2, after 

it was converted from ft/sec to Km/sec.  

 

Table 2. Ottawa-sand specimen measured velocities versus average water saturation under differential 

pressure (Pd=1500psi) from Domenico (1977).  

 

6.2.1.1   Modeling and interpreting measured and computed ultrasonic velocity 

models 

6.2.1.1.1   Modeling the compressional wave velocities (P-wave) 

               All calculations for compressional and shear-wave velocities were coded using 

Microsoft Excel software. The beginning of the velocity calculations starts from the 

measured data. First, we calculated the dynamic shear modulus ( µ ) from the measured 

Average water saturation 

(Sw) 

Compressional wave velocity VP 

(Km/s) 

Shear wave velocity 

VS (Km/s) 

0 1.255 0.836 

0.504 1.255 0.829 

0.556 1.266 0.829 

0.667 1.260 0.827 

0.865 1.294 0.813 

0.939 2.030 0.783 

0.974 2.060 0.802 

1 2.072 0.801 

Taken from Domenico 1977 
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shear velocity at full-gas saturation by Equation (50). The shear modulus was assumed to 

be independent of saturation. The dry and the wetted shear moduli are equal: 

(µ Dry= µ wet). The shear modulus varies with the mass coupling factor (κ ). The input and 

output parameters in calculating the effective shear modulus are listed in Table 3.  The 

value of gas density is different at pressure (1500 psi).The fluid density ( fρ ) was 

computed from Equation (9), and the bulk density ( bρ ) was computed from Equation (8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3. Calculations of the dynamic shear modulus at different values of mass coupling factor in 

Ottawa sand at full gas saturation. 

 

The shear modulus increased as the mass coupling facto increased. After the shear 

modulus was determined, the calculation of the effective bulk modulus (Ksat) began. From 

Equation (48), the input parameters were calculated starting with the frame 

compressibility. ( bC ) was computed from the measured compressional and shear 

velocities by Equation (49). The rock bulk density increased with water saturation since 

the density of water is higher than gas. Some input parameters are listed in Table 4. 

Input at Sw = 0 Output 

ρf 

(g/cm³) 

ρb 

(g/cm³) 

VS
2
 

(km/s) 
Ø к 

µ 

(Gpa) 

0.132 1.66 0.699 0.383 1 1.143 

0.132 1.66 0.699 0.383 1.5 1.149 

0.132 1.66 0.699 0.383 2 1.152 

0.132 1.66 0.699 0.383 2.5 1.154 

0.132 1.66 0.699 0.383 3 1.166 

0.132 1.66 0.699 0.383 11 1.175 

0.132 1.66 0.699 0.383 ∞ 1.177 



 56

 

 

 
 Table 4.Ottawa sand parameters used to calculate the effective bulk modulus. 

 

The effective fluid compressibility ( fC ) was calculated separately by Equations 

(30) and (31), and represents the Reuss and Voigt averages. The fluid compressibilities 

were computed separately using the values in Table (1) while considering the changing in 

pressure and temperature.  

Sw 

Reuss  

Ksat 

(Gpa) 

Voigt  

Ksat 

 (Gpa) 

Simple Patchy  

Ksat 

(Gpa) 

0 1.119 1.119 1.119 

0.05 1.115 2.344 1.210 

0.1 1.113 3.079 1.308 

0.2 1.110 3.964 1.526 

0.4 1.109 4.926 2.082 

0.6 1.111 5.536 2.884 

0.65 1.112 5.664 3.144 

0.7 1.114 5.786 3.437 

0.73 1.115 5.856 3.630 

0.76 1.116 5.925 3.840 

0.8 1.119 6.014 4.147 

0.82 1.121 6.057 4.314 

0.84 1.123 6.100 4.491 

0.86 1.126 6.142 4.680 

0.88 1.130 6.183 4.881 

0.9 1.135 6.225 5.095 

0.92 1.143 6.265 5.324 

0.94 1.157 6.305 5.569 

0.96 1.184 6.345 5.832 

0.98 1.264 6.384 6.116 

0.99 1.416 6.403 6.267 

0.992 1.489 6.407 6.297 

0.994 1.606 6.411 6.328 

0.996 1.823 6.415 6.360 

0.998 2.372 6.419 6.391 

0.999 3.153 6.421 6.407 

1 6.423 6.423 6.423 

Table 5. Results of calculated effective bulk moduli of uniform, segregated, and patchy saturation 

distribution in Ottawa Sand. 

ρw 

(g/cm
3
) 

ρg 

(g/cm
3
) 

Ø 

Cb 

(Gpa
-1

) 

Cs 

(Gpa
-1

) 

β = Cs/Cb (1-β) 

1.13 0.132 0.383 0.9 0.027 0.03 0.97 
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When all the input parameters were computed, the output is effective bulk moduli 

of Reuss (uniform distribution), Voigt (fully segregated distribution), and patchy (simple 

segregation distribution.) The saturated bulk modulus of the simple patchy was computed 

separately from Equation (38), (Hill 1963). The three different effective bulk moduli 

versus saturation results are listed in Table 5.  

Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

µ = 1.143 (Gpa) 

Reuss  

VP 

(km/s) 

Voigt  

VP 

(km/s) 

Simple Patchy  

VP 

(km/s) 

0 0.132 1.686 1.271 1.271 1.271 

0.05 0.182 1.705 1.270 1.538 1.293 

0.1 0.232 1.724 1.270 1.678 1.316 

0.2 0.332 1.762 1.269 1.832 1.366 

0.4 0.531 1.838 1.269 1.986 1.485 

0.6 0.731 1.915 1.270 2.078 1.642 

0.65 0.781 1.934 1.270 2.097 1.690 

0.7 0.831 1.953 1.270 2.114 1.742 

0.73 0.861 1.965 1.270 2.125 1.775 

0.76 0.890 1.976 1.271 2.134 1.811 

0.8 0.930 1.991 1.271 2.147 1.862 

0.82 0.950 1.999 1.272 2.153 1.890 

0.84 0.970 2.007 1.272 2.159 1.918 

0.86 0.990 2.014 1.273 2.165 1.948 

0.88 1.010 2.022 1.274 2.171 1.979 

0.9 1.030 2.030 1.275 2.177 2.012 

0.92 1.050 2.037 1.277 2.183 2.046 

0.94 1.070 2.045 1.281 2.188 2.083 

0.96 1.090 2.053 1.287 2.194 2.121 

0.98 1.110 2.060 1.306 2.199 2.162 

0.99 1.120 2.064 1.341 2.202 2.183 

0.992 1.122 2.065 1.357 2.202 2.187 

0.994 1.124 2.066 1.383 2.203 2.191 

0.996 1.126 2.066 1.431 2.204 2.196 

0.998 1.128 2.067 1.544 2.204 2.200 

0.999 1.129 2.067 1.691 2.204 2.202 

1 1.130 2.068 2.205 2.205 2.205 

Table 6. Results of computed P-wave velocities versus saturation of the uniform, segregated, and 

simple patchy in Ottawa sand. 
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The compressional wave velocities are calculated from Biot’s high frequency 

Equations (51). The computed bulk moduli were calculated at a mass coupling factor 

equal to one (κ =1), and at a connected-to-total porosity ratio equal to one ( cφ = Tφ ). The 

computed compressional wave velocity results of the three different distribution models 

are listed in Table 6.  

The computed and measured compressional wave velocities as a function of water 

saturation were modeled using Microsoft Excel software. Figure 16 shows the Ottawa 

sand velocity curves versus water saturation of both measured and computed 

compressional wave velocities. 

  Ottawa Sandstone (κ=1,    Ø=0.383, Øc/Øt=1,   Pd=1500 PSI)
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Figure (16):  Results of P-wave velocity models in Ottawa sand as a function of water saturation 

from Domenico (1977) at coupling factor of one (κ=1), porosity ratio of one ( Tc φφ / =1), and 

deferential pressure of 1500 psi. 
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The ending point of the theoretical computed models at full water saturation (Sw = 

1) did not match the measured velocity. Measured velocities were in good agreement 

with the uniform model on saturation range from full gas saturation (Sw = 0) to high water 

saturation (Sw = 0.85). The ratio of connected to total porosity of 1 did not match the 

ending point of the models. If the ratio of connected to total porosity takes a different 

value, then the ending point can be matched. Also changing the value of the mass 

coupling factor can add more accuracy in fitting the models, since the assumed value of 

coupling could be inaccurate. However, when the mass coupling factor increases to a 

value of 2.5 (κ = 2.5), the ending point matched with the measured velocities at high 

water saturation, but there was a violation with the uniform model for the rest of the 

measured values from Sw =20% to Sw = 80%. 

6.2.1.1.2 Correcting compressional wave velocity models 

As the ratio of connected-to-total porosity was changing, there was a potential to 

fit the ending point. Different ratios were used until the best fit was achieved. The best fit 

was achieved at ratio of connected-to-total porosity of 0.75 ( cφ / Tφ =0.75), which means 

that 25% of the total porosity was disconnected and considered as part of the solid grain 

compressibility ( sC ). Table 7 has the new parameters separating the total porosity. 

 

 

 

 

Table 7. Ottawa sand new parameters used to calculate the effective bulk moduli. 

 

ρw 

(g/cm
3
) 

ρg 

(g/cm
3
) 

Øc 

Cb 

(Gpa
-1

) 

C*S 

(Gpa
-1

) 

Β=Cs/Cb (1-β) 

1.13 0.132 0.28725 0.9 0.102 0.11 0.89 
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After repeating the same steps from the previous calculations, the velocities were 

computed and then modeled. Figure 17 show the velocity curves of the P-wave velocities 

according to the porosity separation method. 

  Ottawa Sandstone (κ=1,    Ø=0.383, Øc/Øt=0.75  Pd=1500 PSI)
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Figure (17): Curve fit of P-wave velocity models in Ottawa Sands as a function of water saturation 

from Domenico (1977) at a differential pressure of 1500 psi. Curve fit parameters include a 

coupling factor of one, connected-to-total porosity ratio of 0.7. Solid circles are saturations 

established using the flow technique. 

 

 

6.2.1.1.3 Interpreting compressional wave velocity models 

              The measured data fit the uniform model at high saturation range, starting from 

full-gas saturation (Sw = 0%) to high water saturation (Sw = 85%). The measured data fit 

the uniform model because Ottawa sand has high permeability and porosity. So the pore 

pressure has time to equilibrate, and also the fluid can move freely between the pores of          

different   shapes. At (Sw   = 0.9) the measured P-wave velocity suddenly jumped to violate 
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the patchy model and match the fully segregated model. There is no transitional zone for 

the measured data from the uniform model to the fully segregated model.  

The rapid change in velocity at high-water saturation can be fit using the patchy 

segregation model which represents the intermediate zone between uniform and 

segregated distribution. The patchy segregation was modeled using Equation (53). The 

effective bulk modulus and the compressional wave velocity of the patchy segregation 

are listed in Table 8.  

Sw KUniform KSegregated Kuni+4/3µ Kseg+4/3µ ρb 4/3 µ Keff VP 

0.86 1.14 5.843 2.676 7.379 1.73 1.536 1.4 1.285 

0.93 1.177 5.933 2.713 7.469 1.77 1.536 5.915 2.037 

Table 8. Calculations of the patchy segregation model in Ottawa sand. 

The transitional zone starts at Sw = 0.85 and ends at Sw= 0.94, so the value of saturation is 

0 at Suniform and 1 at Ssegregated, and the value of saturation between the starting and ending 

point, will be interpolated as a percentage value on the saturation range between 0.85 and 

0.94; for example, at Sw = 0.86, the value should be in the equation equal to 0.1, while at 

the Sw = 0.93 it should be equal to 0.98. The measured velocity at full-water saturation in 

Ottawa sand jumped from the starting point to the ending point of the patchy segregation 

model. Because Ottawa sand has a high permeability and porosity there is no major 

transitional zone. Figure (18) shows the last results of fitting the measured compressional 

wave velocity data with the theoretical models in Ottawa sand.  
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  Ottawa Sandstone (κ=1,    Ø=0.383, Øc/Øt=0.75    Pd=1500 PSI)
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Figure (18): Curve fit of P-wave velocity models in Ottawa sands as a function of water saturation 

from Domenico (1977) at a differential pressure of 1500 psi. Curve fit parameters include 

coupling factor of one, connected-to-total porosity ratio of 0.75, and patchy segregation model in 

the transitional zone from Sw = 85% to 94%. Solid circles are saturations established using the flow 

technique. 

 

6.2.1.1.4 Modeling the shear-wave velocities (S-wave) 

The shear-wave velocities are computed from the Biot high-frequency equation 

(52), since Geertsma did not develop equations for shear-wave velocity. The computed 

shear velocities versus saturation are computed for different values of mass coupling 

factor from one to infinite. Results are listed in Table (9). 

6.2.1.1.5 Interpreting shear-wave velocity models 

From Figure (19), shear-wave velocities were modeled versus water saturation at 

four values of mass coupling factor. The measured values were in good agreement with 

the theoretical models at mass coupling factor of (κ =1, κ=2). The shear velocity 

decreased linearly with increasing saturation, because fluid density increased. Shear- 
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wave velocity was very sensitive to fluid distribution. The flow technique caused non-

uniformity in the shear-wave velocity behavior.  

Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

к = 1 

µ=1.143 

(Gpa) 

к = 1.5 

µ=1.155 

(Gpa) 

к = 3 

µ= 1.66 

(Gpa) 

к = ∞ 

µ= 1.77 

(Gpa) 

VS  (km/s) VS  (km/s) VS  (km/s) VS  (km/s) 

0 0.132 1.662 0.836 0.836 0.836 0.836 

0.05 0.182 1.682 0.836 0.835 0.833 0.831 

0.1 0.232 1.702 0.836 0.833 0.830 0.827 

0.2 0.332 1.743 0.836 0.830 0.823 0.818 

0.4 0.531 1.824 0.836 0.824 0.811 0.801 

0.6 0.731 1.905 0.836 0.817 0.800 0.785 

0.65 0.781 1.926 0.836 0.816 0.797 0.781 

0.7 0.831 1.946 0.836 0.814 0.795 0.778 

0.73 0.861 1.958 0.836 0.814 0.793 0.775 

0.76 0.890 1.970 0.836 0.813 0.791 0.773 

0.8 0.930 1.987 0.836 0.812 0.789 0.770 

0.82 0.950 1.995 0.836 0.811 0.788 0.769 

0.84 0.970 2.003 0.836 0.810 0.787 0.767 

0.86 0.990 2.011 0.836 0.810 0.786 0.766 

0.88 1.010 2.019 0.836 0.809 0.785 0.764 

0.9 1.030 2.027 0.836 0.809 0.784 0.763 

0.92 1.050 2.035 0.836 0.808 0.783 0.762 

0.94 1.070 2.043 0.836 0.807 0.782 0.760 

0.96 1.090 2.052 0.836 0.807 0.781 0.759 

0.98 1.110 2.060 0.836 0.806 0.780 0.757 

0.99 1.120 2.064 0.836 0.806 0.779 0.757 

0.992 1.122 2.065 0.836 0.806 0.779 0.757 

0.994 1.124 2.065 0.836 0.806 0.779 0.756 

0.996 1.126 2.066 0.836 0.806 0.779 0.756 

0.998 1.128 2.067 0.836 0.806 0.779 0.756 

0.999 1.129 2.067 0.836 0.806 0.779 0.756 

1 1.130 2.068 0.836 0.806 0.779 0.756 

Table 9. Results of computed S-wave velocities versus saturation in Ottawa sand at different coupling 

factor values. 
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   Ottawa Sandstone (Ø=0.383, Øc/Øt=1,  Pd=1500 PSI)
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Figure (19): Curve fit of S-wave velocity in Ottawa sand as a function of water saturation from 

Domenico (1977) at coupling factor of (κ =1, 1.5, 3, ∞) and pressure of 1500 psi. Solid circles are 

saturations established using a flow technique. 

 

 

6.2.2 Glass Beads  

         Domenico (1977) also measured ultrasonic velocities in another unconsolidated 

sample, spherical glass beads, which have almost the same porosity and compressibility 

of Ottawa sands. The only difference is the grain density, grain shape, and pore size; the 

glass beads are shown in Figure 20. 

 
 

 
Figure (20):  Scanning-electron-microscope photograph of glass beads 

Taken from Domenico 1977 

κ = ∞ 

κ =1 

κ = 1.5 

κ = 3 



 65

Table 10. Glass Beads measured velocities using the imbibitions technique from Domenico (1977). 

 

Table 11. Glass Beads measured velocities using the flow technique. 

 

 

 

Average water saturation 

 (Sw) 

Compressional wave velocity 

Vp (Km/s) 

Shear wave velocity 

Vs (Km/s) 

0.887 1.1064 0.673 

0.947 1.143 0.635 

0.949 1.102 0.668 

0.988 1.1198 0.673 

1 2.115 0.785 

Average water saturation 

 (Sw) 

Compressional wave velocity 

Vp (Km/s) 

Shear wave velocity 

Vs (Km/s) 

0 1.218 0.774 

0.139 1.234 0.730 

0.145 1.266 0.726 

0.567 1.108 0.728 

0.57 1.115 0.736 

0.66 1.105 0.647 

0.74 1.354 0.714 

0.743 1.085 0.647 

0.753 1.451 0.673 

0.796 1.461 0.691 

0.825 1.444 0.687 

0.852 1.828 0.654 

0.87 2.107 0.714 

0.902 1.904 0.654 

0.937 1.829 0.658 

0.946 2.090 0.704 

1 2.071 0.703 

1 2.083 0.710 

1 2.053 0.772 
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Two techniques were used to establish partial saturation, the imbibition and flow 

techniques. The measured velocity values from the imbibition technique are listed in 

Table 10. The measured velocity data from the flow technique are listed in Table 11.  

 

6.2.2.1 Modeling and interpreting measured and computed ultrasonic velocity 

models 

 

6.2.2.1.1 Modeling the compressional wave velocities (P-wave) 

 
   The data from the imbibition technique was not complete for the whole 

saturation range, so we provide the missing information from the data of the flow 

technique. The shear modulus was calculated from the measured shear velocity at the dry 

point (Sw=0). The results are listed in Table 12. The steps were applied similar to the 

previous calculations.  Some of the parameters and fluid properties of glass beads are 

listed in Table 13.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 12. Calculations of dynamic shear modulus at different values of mass coupling factor in 

glass beads at full-gas saturation. 

 

 

Input at Sw = 0 Output 

ρf 

(g/cm³) 

ρb 

(g/cm³) 

VS
2
 

(km/s) 
Ø к 

µ 

(Gpa) 

0.132 1.54 0.599 0.383 1 0.895 

0.132 1.54 0.599 0.383 1.5 0.905 

0.132 1.54 0.599 0.383 2 0.910 

0.132 1.54 0.599 0.383 2.5 0.913 

0.132 1.54 0.599 0.383 3 0.915 

0.132 1.54 0.599 0.383 11 0.922 

0.132 1.54 0.599 0.383 ∞ 0.924 
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Table13. glass bead parameters and properties used to calculate the effective bulk moduli. 

 

The calculations of the three effective bulk moduli were computed using the same steps 

mentioned in the Ottawa sand calculations and described in section 6.2.1.1.1. The results 

are listed in Table 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14. Results of calculated effective bulk moduli of uniform, segregated, and patchy saturation 

distribution in glass beads. 

ρw 

(g/cm
3
) 

ρg 

(g/cm
3
) 

Ø 
Cb 

(Gpa
-1

) 

Cs 

(Gpa
-1

) 

β=Cs/Cb (1-β) 

1.13 0.132 0.383 0.95 0.027 0.0285 0.9715 

Sw 

Reuss 

 Ksat 

(Gpa) 

Voigt 

 Ksat 

(Gpa) 

Patchy 

 Ksat 

(Gpa) 

0 1.074 1.074 1.074 

0.05 1.071 2.202 1.155 

0.1 1.069 2.884 1.242 

0.2 1.067 3.712 1.436 

0.4 1.066 4.627 1.937 

0.6 1.067 5.221 2.672 

0.65 1.068 5.346 2.913 

0.7 1.070 5.466 3.187 

0.73 1.071 5.536 3.369 

0.76 1.072 5.603 3.567 

0.8 1.075 5.691 3.859 

0.82 1.076 5.734 4.019 

0.84 1.079 5.777 4.190 

0.86 1.081 5.819 4.372 

0.88 1.085 5.860 4.566 

0.9 1.090 5.901 4.775 

0.92 1.098 5.941 5.000 

0.94 1.111 5.981 5.242 

0.96 1.137 6.021 5.504 

0.98 1.212 6.060 5.789 

0.99 1.356 6.079 5.940 

0.992 1.425 6.083 5.971 

0.994 1.536 6.087 6.002 

0.996 1.742 6.091 6.034 

0.998 2.262 6.094 6.066 

0.999 3.002 6.096 6.082 

1 6.098 6.098 6.098 



 68

After the effective bulk moduli were computed, the compressional wave velocities were 

calculated by Biot’s high frequency Equation (51). The results of the computed P-wave 

velocity values are listed in Table 15.  

Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

µ = 0.895  (Gpa) 

Reuss  

VP 

(km/s) 

Voigt 

 VP 

(km/s) 

Patchy 

 VP 

(km/s) 

0 0.132 1.544 1.232 1.232 1.271 

0.05 0.182 1.563 1.231 1.508 1.293 

0.1 0.232 1.582 1.231 1.652 1.316 

0.2 0.332 1.620 1.230 1.812 1.366 

0.4 0.531 1.697 1.230 1.974 1.485 

0.6 0.731 1.773 1.230 2.073 1.642 

0.65 0.781 1.792 1.231 2.093 1.690 

0.7 0.831 1.811 1.231 2.112 1.742 

0.73 0.861 1.823 1.231 2.123 1.775 

0.76 0.890 1.834 1.232 2.134 1.811 

0.8 0.930 1.849 1.232 2.147 1.862 

0.82 0.950 1.857 1.233 2.154 1.890 

0.84 0.970 1.865 1.234 2.161 1.918 

0.86 0.990 1.872 1.234 2.167 1.948 

0.88 1.010 1.880 1.235 2.173 1.979 

0.9 1.030 1.888 1.237 2.180 2.012 

0.92 1.050 1.895 1.239 2.186 2.046 

0.94 1.070 1.903 1.242 2.192 2.083 

0.96 1.090 1.911 1.249 2.198 2.121 

0.98 1.110 1.918 1.269 2.204 2.162 

0.99 1.120 1.922 1.307 2.207 2.183 

0.992 1.122 1.923 1.324 2.207 2.187 

0.994 1.124 1.924 1.352 2.208 2.191 

0.996 1.126 1.924 1.402 2.209 2.196 

0.998 1.128 1.925 1.521 2.209 2.200 

0.999 1.129 1.926 1.676 2.210 2.202 

1 1.130 1.926 2.210 2.210 2.205 

Table 15. Results of computed P-wave velocities versus saturation of the uniform, segregated, and 

simple patchy models in glass beads. 

 

The computed and measured compressional wave velocities as a function of water 

saturation are modeled. Figure 21, shows the glass beads velocity curves versus water 
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saturation of both measured and computed compressional wave velocities at a coupling 

factor of one  (κ =1), and connected-to-total porosity ratio of one.  
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Figure (21): Results of P-wave velocity models in glass beads as a function of water saturation 

from Domenico (1977) at coupling factor of one (κ=1), porosity ratio of one ( Tc φφ / =1), and 

deferential pressure of 1500 psi. 

 

 

The flow technique shows heterogeneity in fluid distribution, but most the measured data 

did not match the uniform model; also the ending point of the data did not match at the 

coupling factor of one.  The ending point was able to be matched by varying the coupling 

factor value and the ratio of connected-to-total porosity. Figure 22 shows the glass bead 

data at a coupling factor of 2.2.  

 



 70

 Glass Beads Sand (κ=2.2,  Ø=0.383, Øc/Øt=1,  Pd=1500 PSI)
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Figure (22) Results of P-wave velocity models in glass beads as a function of water saturation 

using the flow technique from Domenico (1977) at coupling factor of 2.2 (κ=2.2), porosity ratio of 

one ( Tc φφ / =1), and deferential pressure of 1500 psi. 

 

6.2.2.1.2 Interpreting compressional wave velocity models 

It is obvious that the flow technique of the fluid injection showed very large 

scatter of the data at the medium saturation range between Sw=70% and Sw=85%. The 

values of measured velocities between Sw= 55% and Sw=75% were below the uniform 

theoretical model, and these values are probably experimental errors, because these four 

values are below the theoretical model of all coupling factor values. At low water 

saturation the measured data matched the uniform model, while at medium water-

saturation the data fit the patchy segregation model, which is the transitional zone 

between the uniform and the fully segregated.  
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At very high saturation the data fit the fully segregated model. The patchy segregation 

behavior matched many measured values since the permeability is lower than that of 

Ottawa sand.  The calculation results of the patchy segregation are listed in Table 16. 

 

Sw KUniform KSegregated Ku+4/3µ Ks+4/3µ ρb 4/3 µ Keff VP 

0.7 1.072 5.290 2.265 6.483 1.566 1.193 1.072 1.202 

0.93 1.620 5.594 2.813 6.787 1.587 1.193 5.594 1.068 

Table 16. Calculations of the patchy segregation model in glass beads. 

 

The transitional zone began at Sw = 70% to Sw = 93%. The saturation value in the 

calculation was taken from 0 at the starting transitional zone (uniform saturation) to 1 at 

the ending point (segregated saturation).  The flow technique created larger fully 

segregated gas patches. The value above the segregated model was also interpreted as an 

experimental error. Another fit to the glass bead data can be done by separating the 

porosity at a ratio of connected-to-total of 0.77; Figure 23 shows the results.  
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 Glass Beads Sand (κ=1,  Ø=0.383, Øc/Øt=0.77,  Pd=1500 PSI)
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Figure (23): Curve fit of P-wave velocity models in glass beads as a function of water saturation 

from Domenico (1977) at a differential pressure of 1500 psi. Curve fit parameters include a 

coupling factor of one, connected-to-total porosity ratio of 0.77. The solid circles are saturations 

established using the flow technique. 

 

Both methods showed almost similar results in fitting the ending and starting points of 

the models. The results from the porosity separation are more accurate in fitting the data 

on the patchy segregation model. The flow technique resulted in a large segregation of 

the fluid. However, the imbibition technique showed more uniform behavior than the 

flow technique. The modeling results of compressional wave velocity data of glass bead 

are shown in Figure (24).  
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 Glass Beads Sand (κ=2,  Ø=0.383, Øc/Øt=1,  Pd=1500 PSI)
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Figure (24): Curve fit of P-wave velocity models in glass beads as a function of water saturation 

from Domenico (1977) at a differential pressure of 1500 psi. Curve fit parameters include 

coupling factor of 2, connected to total porosity ratio of 1.The Solid circles are saturations 

established using the imbibition technique. 

 

The imbibition technique resulted in more uniform distribution. The measured 

data was quite near the uniform model at a coupling factor к = 2. The measured data 

using the imbibition technique were not complete for the whole saturation range, so the 

same input data of the flow technique were used in modeling the data. Because the data 

were complete, there were three measured values under the uniform theoretical model. 

The exact value of mass coupling factor was not known through the measurements, so 

varying the value resulted in good agreement between measured and computed P-wave 

velocities.  
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6.2.2.1.3 Modeling the shear-wave velocities (S-wave) 

The calculated shear-wave velocities are listed versus water saturation at different 

values of mass coupling factor (κ =1, 1.5,3, and ∞) were modeled, and Table (17) shows 

the results.  

Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

к = 1 

µ=0.895 

(Gpa) 

к = 1.5 

µ=0.905 

(Gpa) 

к = 3 

µ= 0.915 

(Gpa) 

к = ∞ 

µ= 0.924 

(Gpa) 

VS  (km/s) VS  (km/s) VS  (km/s) VS  (km/s) 

0 0.132 1.544 0.770 0.771 0.773 0.774 

0.05 0.182 1.563 0.774 0.773 0.771 0.769 

0.1 0.232 1.582 0.774 0.771 0.768 0.765 

0.2 0.332 1.620 0.774 0.768 0.762 0.756 

0.4 0.531 1.697 0.774 0.761 0.750 0.739 

0.6 0.731 1.773 0.774 0.755 0.738 0.723 

0.65 0.781 1.792 0.774 0.754 0.735 0.719 

0.7 0.831 1.811 0.774 0.752 0.733 0.716 

0.73 0.861 1.823 0.774 0.751 0.731 0.713 

0.76 0.890 1.834 0.774 0.750 0.729 0.711 

0.8 0.930 1.849 0.774 0.749 0.727 0.708 

0.82 0.950 1.857 0.774 0.749 0.726 0.707 

0.84 0.970 1.865 0.774 0.748 0.725 0.705 

0.86 0.990 1.872 0.774 0.748 0.724 0.704 

0.88 1.010 1.880 0.774 0.747 0.723 0.702 

0.9 1.030 1.888 0.774 0.746 0.722 0.701 

0.92 1.050 1.895 0.774 0.746 0.721 0.700 

0.94 1.070 1.903 0.774 0.745 0.720 0.698 

0.96 1.090 1.911 0.774 0.745 0.719 0.697 

0.98 1.110 1.918 0.774 0.744 0.718 0.696 

0.99 1.120 1.922 0.774 0.744 0.717 0.695 

0.992 1.122 1.923 0.774 0.744 0.717 0.695 

0.994 1.124 1.924 0.774 0.744 0.717 0.695 

0.996 1.126 1.924 0.774 0.744 0.717 0.694 

0.998 1.128 1.925 0.774 0.743 0.717 0.694 

0.999 1.129 1.926 0.774 0.743 0.773 0.694 

1 1.130 1.926 0.774 0.743 0.771 0.694 

Table 17. Results of computed S-wave velocities versus saturation in glass beads at different coupling 

factor values.  

 

The shear-wave velocities modeled versus saturation with the measured data of the flow 

and imbibition techniques are shown in Figure (25). 
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Figure (25): Curve fit of S-wave velocity in glass beads as a function of water saturation from 

Domenico (1977) at a coupling factor of (κ=1, 1.5, 3, ∞) and pressure of 1500 psi. Solid circles are 

saturations established using an imbibition technique, and open circles are for a flow technique. 
 

6.2.2.1.4 Interpreting shear-wave velocity models (S-wave) 

Measured shear-wave velocities were near the theoretical curve for κ = 3, and 

some of the data were below the theoretical curve for κ = ∞. The starting and ending 

points agreed with the theoretical curve for κ =1. In general, shear-wave velocity 

decreased with increasing water saturation. The difference in data values versus 

saturation between the Ottawa sands and glass beads is related to the difference in pore 

shape and grain size. So the dynamic motion of the fluid is different. In the flow 

technique, the gas is distributed inside round pores (stiff pores) as water saturation 

increases, and a mix of patches of uniform and segregated gas distribution are formed. 
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The non-uniformity in gas distribution gives the higher velocities that fit the patchy 

segregation model. 

6.3       Medium-porosity rocks, consolidated sandstone (Boise sandstone)  

Gregory (1976) measured ultrasonic compressional and shear-wave velocities in 

partially saturated consolidated sandstones. The water saturation was reduced by the 

evaporation of water, and the air saturation was increased.  

6.3.1.   Boise sandstone 

Boise sandstone is Pliocene in age, and has a porosity of 26.80 %, (φ = 0.268).  It 

is an arkose, consisting of quartz and chert, 60 %; feldspar, 40%; mica, trace; rock 

fragments, trace, clay, trace. The silica is cemented, and the sand is moderately sorted. 

The ultrasonic velocities were measured at 1000 kHz frequency, and at pressure of 1000, 

5000 psi. Saturation was established by the drying technique. The measured data are 

listed in Table (18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 18. Measured compressional and shear-wave velocity values versus saturation in Boise 

sandstone from Gregory (1976). 

 

Water saturation percent 

(Sw) 

 

Compressional wave velocity 

Vp (Km/s) 
 

Shear wave velocity 

Vs (Km/s) 

0.0 3.087 1.999 

5.0 3.089 2.046 

10.0 3.078 2.051 

20.0 3.078 2.020 

40.0 3.078 2.016 

60.0 3.246 2.010 

80.0 3.360 1.994 

100.0 3.401 1.959 
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6.3.1.1 Modeling and interpreting measured and computed ultrasonic velocity 

models  

6.3.1.1.1 Modeling the compressional wave velocity (P-wave)  

 The dynamic shear modulus (µ) was calculated from the measured shear velocity 

at full-gas saturation by Equation (50). The shear modulus was assumed to be 

independent of saturation. The dry and the wetted shear moduli were equal (µ Dry=µ wet). 

The shear modulus varied with the coupling factor (κ ). The input and output parameters 

are listed in Table 19. The value of gas density was different at pressure (1000 psi). The 

fluid density ( fρ ) was computed from Equation (9), and the bulk density ( bρ ) was 

computed from Equation (8).   

 

 

 

 

 

 

 

 

 

 

 

 
Table 19. Calculations of dynamic shear modulus at different values of mass coupling factor in 

Boise sandstone at full gas saturation from Gregory (1967).  

 

After the shear modulus is determined, the calculation of the effective bulk modulus (Ksat) 

began. From Equation (48), the input parameters were calculated starting with the frame 

compressibility ( bC ) which is computed from the measured compressional and shear 

velocities by Equation (49).  

Input at Sw= 0 Output 

ρf 

(g/cm³) 

ρb 

(g/cm³) 

V²s 

(km/s) 
Ø к 

µ 

(Gpa) 

0.088 1.66 3.996 0.268 1 7.751 

0.088 1.66 3.996 0.268 1.5 7.783 

0.088 1.66 3.996 0.268 2 7.799 

0.088 1.66 3.996 0.268 2.5 7.808 

0.088 1.66 3.996 0.268 3 7.814 

0.088 1.66 3.996 0.268 11 7.837 

0.088 1.66 3.996 0.268 ∞ 7.845 
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The rock bulk density increased with water saturation since the density of water is higher 

than gas. Some input parameters are listed in Table (20). 

 

 

 

 

Table 20. Boise sandstone parameters used to calculate the effective bulk moduli. 

 

The calculations of the three effective bulk moduli were computed using the same steps 

described in section 6.2.1.1.1. The results are listed in Table 21. 

Sw 

Reuss  

Ksat 

(Gpa) 

Voigt 

 Ksat 

 (Gpa) 

Patchy 

 Ksat 

(Gpa) 

0 8.263 8.263 8.263 

0.05 8.262 9.975 8.487 

0.1 8.262 10.855 8.717 

0.2 8.261 11.803 9.193 

0.4 8.261 12.733 10.221 

0.6 8.261 13.290 11.364 

0.65 8.262 13.405 11.670 

0.7 8.262 13.514 11.984 

0.73 8.262 13.577 12.177 

0.76 8.262 13.638 12.373 

0.8 8.262 13.717 12.641 

0.82 8.263 13.755 12.777 

0.84 8.263 13.793 12.914 

0.86 8.263 13.830 13.053 

0.88 8.264 13.867 13.194 

0.9 8.264 13.903 13.337 

0.92 8.265 13.939 13.481 

0.94 8.267 13.974 13.628 

0.96 8.271 14.009 13.776 

0.98 8.281 14.043 13.925 

0.99 8.301 14.061 14.001 

0.992 8.312 14.064 14.016 

0.994 8.329 14.067 14.031 

0.996 8.362 14.071 14.047 

0.998 8.460 14.074 14.062 

0.999 8.647 14.076 14.069 

1 14.077 14.077 14.077 

Table 21. Results of calculated effective bulk moduli of uniform, segregated, and patchy saturation 

models in Boise sandstone at κ=1 and connected-to-total porosity ratio of one, from Gregory 

(1976).  

ρw 

(g/cm
3
) 

ρg 

(g/cm
3
) 

ØT 

Cb 

(Gpa
-1

) 

Cs 

(Gpa
-1

) 

β = Cs/Cb (1-β) 

1.0 0.088 0.268 0.121 0.027 0.22 0.78 
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Then the P-wave velocities of the three models were calculated from Equation (49), and 

the compressional wave velocity results of the three different distribution models are 

listed in Table (22). 

Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

µ= 7.751  (Gpa) 

Reuss  

VP 

(km/s) 

Voigt  

VP 

(km/s) 

Patchy  

VP 

(km/s) 

0 0.088 1.963 3.096 3.096 3.096 

0.05 0.134 1.976 3.096 3.236 3.115 

0.1 0.179 1.988 3.096 3.305 3.134 

0.2 0.270 2.012 3.096 3.378 3.173 

0.4 0.453 2.061 3.096 3.448 3.255 

0.6 0.635 2.110 3.096 3.490 3.345 

0.65 0.681 2.122 3.096 3.498 3.368 

0.7 0.726 2.134 3.096 3.506 3.392 

0.73 0.754 2.142 3.096 3.511 3.407 

0.76 0.781 2.149 3.096 3.515 3.421 

0.8 0.818 2.159 3.096 3.521 3.442 

0.82 0.836 2.164 3.096 3.524 3.452 

0.84 0.854 2.169 3.096 3.527 3.462 

0.86 0.872 2.174 3.096 3.529 3.472 

0.88 0.891 2.178 3.096 3.532 3.483 

0.9 0.909 2.183 3.096 3.535 3.493 

0.92 0.927 2.188 3.097 3.537 3.504 

0.94 0.945 2.193 3.097 3.540 3.515 

0.96 0.964 2.198 3.097 3.543 3.526 

0.98 0.982 2.203 3.098 3.545 3.536 

0.99 0.991 2.205 3.100 3.546 3.542 

0.992 0.993 2.206 3.100 3.547 3.543 

0.994 0.995 2.206 3.102 3.547 3.544 

0.996 0.996 2.207 3.105 3.547 3.545 

0.998 0.998 2.207 3.113 3.547 3.546 

0.999 0.999 2.208 3.128 3.547 3.547 

1 1.000 2.208 3.548 3.548 3.547 

Table 22. Results of computed P-wave velocities versus saturation of the uniform, segregated, and 

simple patchy models in Boise sandstone. 

 

Figure 26 shows the Boise sandstone velocity curves versus water saturation of 

both measured and computed compressional wave velocities at a coupling factor of one  

(κ =1), and a connected-to-total porosity ratio of one.  
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 Boise Sandstone (κ=1, Ø=0.268,  Pd=1000 PSI)
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Figure (26) Results of P-wave velocity models in Boise sandstone as a function of water saturation 

from Gregory (1976) at a coupling factor of one (κ=1), porosity ratio of one ( Tc φφ / =1), and 

deferential pressure of 1000 psi. 

 

At low saturation the measured value were near the theoretical model of uniform 

distribution, but at saturation higher than 50%, the measured data were not consistent 

with the theoretical models, and the ending point did not match.   

The ending point was able to fit the theoretical models when the porosity is 

separated at a ratio of connected-to-total of 0.89, which means that 11% of the total 

porosity was disconnected. The fit also occurred at a mass coupling factor of 1.5. Many 

values of the porosity ratio and coupling were tested until the best fit occurred. The 

results of fitting the measured P-wave velocities with the theoretical models are shown in 

Figure (27). The calculations of the patchy segregation model are listed in Table 23. 
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Sw KUniform KSegregated Ku+4/3µ Ks+4/3µ ρb 4/3 µ Kef VP 

0.4 8.261 11.779 18.648 22.166 1.959 10.387 8.261 3.085 

0.8 8.262 12.894 18.649 23.281 2.049 10.387 12.894 3.371 

Table 23.  Calculations of the patchy segregation model in Boise sandstone. 

 

 Boise Sandstone (κ=1.5, Øc/Øt=0.24/0.268=0.89,  Pd=1000 PSI)
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Figure (27): Curve fit of P-wave velocity models in Boise sandstone as a function of water 

saturation from Gregory (1976) at a differential pressure of 1000 psi. Curve fit parameters include 

a coupling factor of κ =1.5, connected-to-total porosity ratio of 0.89, and a patchy segregation 

model from Sw = 40% to Sw = 100%. Solid circles are saturations established using the drying 

technique. 

 

6.3.1.1.2   Interpreting compressional wave-velocity models 
 

 The data could be interpreted after the ending point was matched at full-water 

saturation. The measured data fit the uniform theoretical model at low-water saturation. 

With increasing saturation at Sw= 40% the measured velocity increased to fit the 

transitional patchy segregation model. Then with increasing water saturation the 

measured data still fit the patchy segregation model, which fell between the simple 
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patchy and fully segregated models. The saturation curve in Boise sandstone exhibited 

two saturation regimes: the uniform at low saturation, and the patchy segregation at 

medium and high water saturation. The two saturation regimes produced in Boise 

sandstone are related to the medium porosity and permeability. 

6.3.1.1.3   Modeling the shear-wave velocities (S-wave) 

The calculated shear wave velocities are listed in Table 24. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 24. Results of computed S-wave velocities versus saturation in Boise sandstone at different coupling 

factor values. 

Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

к = 1 

µ=7.751 

(Gpa) 

к = 1.5 

µ=7.783 

(Gpa) 

к = 3 

µ= 7.814 

(Gpa) 

к = ∞ 

µ= 7.845 

(Gpa) 

VS  (km/s) 
VS  

(km/s) 

VS  

(km/s) 

VS  

(km/s) 

0 0.088 1.963 1.999 1.999 1.999 1.999 

0.05 0.134 1.976 1.999 1.997 1.995 1.993 

0.1 0.179 1.988 1.999 1.995 1.991 1.987 

0.2 0.270 2.012 1.999 1.991 1.983 1.975 

0.4 0.453 2.061 1.999 1.983 1.966 1.952 

0.6 0.635 2.110 1.999 1.974 1.951 1.930 

0.65 0.681 2.122 1.999 1.972 1.947 1.924 

0.7 0.726 2.134 1.999 1.970 1.943 1.919 

0.73 0.754 2.142 1.999 1.969 1.941 1.916 

0.76 0.781 2.149 1.999 1.968 1.939 1.912 

0.8 0.818 2.159 1.999 1.966 1.935 1.908 

0.82 0.836 2.164 1.999 1.966 1.934 1.906 

0.84 0.854 2.169 1.999 1.965 1.932 1.904 

0.86 0.872 2.174 1.999 1.964 1.931 1.902 

0.88 0.891 2.178 1.999 1.963 1.929 1.900 

0.9 0.909 2.183 1.999 1.962 1.928 1.898 

0.92 0.927 2.188 1.999 1.962 1.926 1.896 

0.94 0.945 2.193 1.999 1.961 1.925 1.894 

0.96 0.964 2.198 1.999 1.960 1.924 1.891 

0.98 0.982 2.203 1.999 1.959 1.922 1.889 

0.99 0.991 2.205 1.999 1.959 1.921 1.888 

0.992 0.993 2.206 1.999 1.959 1.921 1.888 

0.994 0.995 2.206 1.999 1.959 1.921 1.888 

0.996 0.996 2.207 1.999 1.959 1.921 1.888 

0.998 0.998 2.207 1.999 1.959 1.921 1.888 

0.999 0.999 2.208 1.999 1.959 1.921 1.887 

1 1.000 2.208 1.999 1.958 1.921 1.887 
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The measured and computed shear-wave velocities versus water saturation were modeled 

as shown in Figure (28).  
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Figure 28: Curve fit of S-wave velocity in Boise sandstone as a function of water saturation from Gregory 

(1976) at a coupling factor of (κ=1, 1.5, 3, ∞) and pressure of 1000 psi. Solid circles are saturations 

established using a flow technique. 

 

6.3.1.1.4 Interpreting shear-wave velocity models (S-wave) 

 The measured shear-wave velocity was higher than that of the theoretical 

models at medium-water saturation. The starting and ending points fit exactly the 

theoretical model at a coupling factor of value equal to 1.5. The shear wave velocity 

decreased linearly after Sw=20%. The measured shear-wave velocity was near the 

theoretical models at a coupling factor between 1 and 1.5.  
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6.4    Low-porosity rocks 

6.4.1       Tight gas sand  

 Knight and Nolen-Hoeksema (1991) measured the ultrasonic velocities at 1000 

kHz frequency in tight gas sand from the Spirit River Formation in the Alberta Basin. 

The sample has low porosity (φ = 0.052) and a permeability of 1 micro-darcy. The pores 

are poorly connected by very narrow capillaries causing very low permeability.  The 

saturation was established through the imbibition and drainage techniques. The water 

saturation was increased by the imbibition method (injecting water) while the air 

saturation was increased through the drainage method (water evaporation).  

 The experiment started by measuring the dry sample at Sw = 0 % and going 

through a maximum saturation of Sw = 90%. The velocity measurements were made 

under no pressure effect.  The data measured during the drainage technique are listed in 

Table 25; the data is taken from Gist (1994). Figure 29 shows a thin section of tight gas 

sandstone. 

 

 

 

Figure (29): Photo of Tight Gas Sandstone. 

 

Taken from energy.usgs.gov/.../Petroleum/section2.jpeg 
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Table 25. Measured P-wave and S-wave velocity values versus water saturation during the drainage 

technique in Spirit River Tight Gas Sand. 

 

 

Average water saturation 

(Sw) 

Compressional wave velocity 

VP (Km/s) 

Shear wave velocity 

VS (Km/s) 

0 2.980 2.19 

0.11 2.960 2.2 

0.13 2.960 2.17 

0.14 2.960 2.17 

0.16 2.937 2.16 

0.18 2.960 2.15 

0.2 2.960 2.17 

0.22 2.937 2.15 

0.25 2.921 2.13 

0.29 2.937 2.13 

0.31 2.937 2.12 

0.32 2.971 2.12 

0.37 2.948 2.14 

0.39 2.960 2.12 

0.43 2.990 2.15 

0.45 3.029 2.2 

0.46 3.033 2.2 

0.49 3.052 2.175 

0.51 3.029 2.17 

0.53 3.121 2.2 

0.55 3.167 2.21 

0.57 3.229 2.2 

0.6 3.282 2.24 

0.62 3.328 2.29 

0.63 3.397 2.285 

0.65 3.454 2.285 

0.67 3.534 2.335 

0.69 3.695 2.35 

0.71 3.695 2.375 

0.72 3.741 2.4 

0.75 3.849 2.375 

0.76 3.879 2.4 

0.79 3.909 2.425 

0.8 4.001 2.425 

0.83 4.086 2.44 

0.85 4.121 2.425 

0.88 4.144 2.45 

0.9 4.144 2.42 
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6.4.1.1 Modeling and interpreting measured and computed ultrasonic velocity 

models 

6.4.1.1.1 Modeling the compressional wave velocities (P-wave)   

               The dynamic shear modulus ( µ ) is calculated from the measured shear velocity 

at full-gas saturation by Equation (50). The shear modulus varies with the coupling factor 

(κ ). The input and output parameters are listed in Table 26. The value of air density is 

different at pressure 1 psi. The dynamic shear modulus (µ) did not changing with 

coupling factor. 

 

 

 

 

 

 

 

 

 

 
Table 26. Calculations of dynamic shear modulus at different values of mass coupling 

factor in tight gas sand at full gas saturation from Knight and Nolen-Hoeksema (1990). 

 

The very low porosity was the reason for the shear modulus not changing. After the shear 

modulus was determined, the calculation of the effective bulk moduli (Ksat) began. From 

Equation (48), the input parameters were calculated starting with frame compressibility 

( bC ) which was computed from the measured compressional and shear velocities by 

Equation (49). The rock bulk density increased with water saturation since the density of 

Input at Sw= 0 Output 

ρf 

(g/cm³) 

ρb 

(g/cm³) 

V²s 

(km/s) 
Ø к 

µ 

(Gpa) 

0.000088 2.512 4.796 0.052 1 12.05 

0.000088 2.512 4.796 0.052 1.5 12.05 

0.000088 2.512 4.796 0.052 2 12.05 

0.000088 2.512 4.796 0.052 2.5 12.05 

0.000088 2.512 4.796 0.052 3 12.05 

0.000088 2.512 4.796 0.052 11 12.05 

0.000088 2.512 4.796 0.052 ∞ 12.05 



 87

water is higher than gas. Some input parameters are listed in Table 27. The air 

compressibility was very high under no atmospheric pressure.  

 

 

 

 

 

 

 

Table 27. Tight gas sand parameters used to calculate the effective bulk moduli. 

 

The results of effective bulk moduli are listed in Table (28). 

Sw 

Reuss  

Ksat 

(Gpa) 

Voigt  

Ksat 

 (Gpa) 

Simple Patchy 

Ksat 

(Gpa) 

0 6.279 6.279 6.279 

0.05 6.250 14.142 6.847 

0.1 6.250 16.061 7.445 

0.2 6.250 19.042 8.740 

0.4 6.250 22.958 11.813 

0.6 6.250 25.416 15.758 

0.65 6.250 25.894 16.925 

0.7 6.250 26.331 18.182 

0.73 6.250 26.576 18.983 

0.76 6.250 26.809 19.822 

0.8 6.250 27.103 21.006 

0.82 6.250 27.243 21.628 

0.84 6.250 27.378 22.271 

0.86 6.250 27.510 22.936 

0.88 6.250 27.638 23.625 

0.9 6.250 27.762 24.339 

0.92 6.250 27.883 25.079 

0.94 6.251 28.000 25.847 

0.96 6.251 28.114 26.644 

0.98 6.252 28.224 27.471 

0.99 6.253 28.279 27.897 

0.992 6.254 28.289 27.984 

0.994 6.255 28.300 28.070 

0.996 6.258 28.311 28.157 

0.998 6.265 28.321 28.244 

0.999 6.281 28.327 28.288 

1 28.332 28.332 28.332 

Table 28. Results of calculated effective bulk moduli of uniform, segregated, and patchy saturation 

models in gas tight sand at κ=1 and connected-to-total porosity ratio of one, from Knight and 

Nolen-Hoeksema (1990). 

ρw 

(g/cm
3
) 

ρg 

(g/cm
3
) 

ØT 

Cb 

(Gpa
-1

) 

Cs 

(Gpa
-1

) 

β=Cs/Cb (1-β) 

1.0 0.000088 0.052 0.16 0.027 0.17 0.83 
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The compressional wave velocity results of the three different distribution models are 

listed in Table 29. 

Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

µ = 12  (Gpa) 

Reuss 

 VP 

(km/s) 

Voigt 

 VP 

(km/s) 

Simple Patchy 

 VP 

(km/s) 

0 0.000088 2.512 2.978 2.978 2.978 

0.05 0.050084 2.515 2.975 3.463 3.015 

0.1 0.100079 2.517 2.974 3.570 3.053 

0.2 0.200070 2.523 2.973 3.731 3.135 

0.4 0.400053 2.533 2.969 3.929 3.320 

0.6 0.600035 2.543 2.966 4.046 3.543 

0.65 0.650031 2.546 2.965 4.068 3.607 

0.7 0.700026 2.549 2.964 4.088 3.674 

0.73 0.730024 2.550 2.964 4.100 3.716 

0.76 0.760021 2.552 2.963 4.110 3.760 

0.8 0.800018 2.554 2.962 4.123 3.820 

0.82 0.820016 2.555 2.962 4.129 3.852 

0.84 0.840014 2.556 2.962 4.135 3.884 

0.86 0.860012 2.557 2.961 4.141 3.917 

0.88 0.880011 2.558 2.961 4.147 3.952 

0.9 0.900009 2.559 2.961 4.152 3.986 

0.92 0.920007 2.560 2.960 4.157 4.022 

0.94 0.940005 2.561 2.960 4.163 4.059 

0.96 0.960004 2.562 2.960 4.167 4.097 

0.98 0.980002 2.563 2.959 4.172 4.136 

0.99 0.990001 2.564 2.959 4.174 4.156 

0.992 0.992001 2.564 2.959 4.175 4.161 

0.994 0.994001 2.564 2.959 4.175 4.165 

0.996 0.996000 2.564 2.960 4.176 4.169 

0.998 0.998000 2.564 2.960 4.176 4.173 

0.999 0.999000 2.564 2.961 4.177 4.175 

1 1.000000 2.564 4.177 4.177 4.177 

Table 29. Results of computed P-wave velocities versus saturation of the uniform, segregated, and 

simple patchy models in tight gas sand. 

 

Figure 30 shows Alberta gas tight sand velocity curves versus water saturation of 

both measured and computed compressional wave velocities at a coupling factor of one  

(κ =1), and connected-to-total porosity ratio of one.  
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Spirit River Tight Gas Sand  (κ=1,   Ø=0.052)
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Figure 30: Results of P-wave velocity models in Alberta Gas Tight Sand as a function of water 

saturation from Knight and Nolen-Hoeksema (1990) at coupling factor of one (κ=1), porosity ratio 

of one ( Tc φφ / =1). 

 

Because the porosity was very low, some error in separating the total porosity could have 

given wrong results. As seen in Figure (30), the measured P-wave velocities matched the 

theoretical model of the uniform distribution at saturations between Sw = 0 % and Sw = 

45%. The ending point did not match the theoretical models. The ending point was able 

to be matched if the porosity decreased to a value of 0.023.  

We consider there was an error in measuring the porosity in the laboratory experiment. 

The results of reducing the porosity are shown in Figure 31. The patchy segregation 

model calculations are listed in Table 30.  
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Sw Sw K uni Kseg 4/3 µ Kuni+ 4/3 µ Kseg+ 4/3 µ K eff VP ρb 

0.00 0.42 6.25 23.57 16.00 22.25 39.57 6.25 2.97 2.52 

0.14 0.48 6.25 24.19 16.00 22.25 40.19 7.77 3.07 2.53 

0.29 0.53 6.25 24.80 16.00 22.25 40.80 9.58 3.18 2.53 

0.43 0.59 6.25 25.66 16.00 22.25 41.66 11.81 3.32 2.53 

0.57 0.65 6.25 26.11 16.00 22.25 42.11 14.47 3.47 2.53 

0.72 0.71 6.25 26.58 16.00 22.25 42.58 17.78 3.65 2.53 

0.86 0.76 6.25 26.96 16.00 22.25 42.96 21.94 3.87 2.53 

1.00 0.82 6.25 27.44 16.00 22.25 43.44 27.49 4.14 2.54 

Table 30. Calculations of the patchy segregation model in tight gas sand. 

The transitional patchy segregation zone started from (Sw = 0.42) and ended at   (Sw= 

0.82). The values between the starting and ending points were interpolated as listed in 

Table 30.  The result of the patchy segregation model is shown in Figure 31.  

6.4.1.1.2 Interpreting compressional wave velocity models 

 The Spirit Tight Gas Sand measured data fit the uniform model at low-water 

saturation and the patchy segregation at medium-water saturation, and finally the data fit 

the fully segregated model at high-water saturation. The patchy segregation fit most of 

the data. Because the porosity and permeability was very low the fluid distribution was 

quite segregated non-uniformly.  The gas probably filled the high aspect ratio pores, 

while the wetting fluid (water) filled the low aspect ratio pores with increasing water 

saturation until the data fit the segregated model at high water saturation, where the water 

filled the pores of high aspect ratio completely, which made the rock stiffer and that led 

to higher velocities.   
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Spirit River Tight Gas Sand  (κ=1,   Ø=0.023)

  Knight and Nolen-Hoeksema (1990)  
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Figure (31): Curve fit of P-wave velocity models in Alberta Tight Gas Sand as a function of water 

saturation from Knight and Nolen-Hoeksema (1990). Curve fit parameters include coupling factor 

of κ =1, connected porosity = 0.023, and a patchy segregation model from Sw=42% to Sw= 82%. 

Solid circles are saturations established using the drying technique. 

 

 

6.4.1.1.3 Modeling the shear-wave velocities (S-wave) 

The calculated shear-wave velocity were listed versus water saturation at different 

values of mass coupling factors (κ =1, and ∞), and Table (31) shows the results. The data 

were measured during the drainage cycle. The measured and calculated shear-wave 

velocities were modeled versus water saturation as shown in Figure (32).  
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Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

к = 1 

µ=12 

(Gpa) 

к = 1.5 

µ=12 

(Gpa) 

к = 3 

µ= 12 

(Gpa) 

к = ∞ 

µ= 12 

(Gpa) 

VS  (km/s) VS  (km/s) VS  (km/s) VS  (km/s) 

0 0.000088 2.512 2.186 2.186 2.186 2.186 

0.05 0.050084 2.515 2.186 2.185 2.185 2.184 

0.1 0.100079 2.517 2.186 2.185 2.184 2.183 

0.2 0.200070 2.523 2.186 2.184 2.183 2.181 

0.4 0.400053 2.533 2.186 2.183 2.180 2.177 

0.6 0.600035 2.543 2.186 2.181 2.177 2.172 

0.65 0.650031 2.546 2.186 2.181 2.176 2.171 

0.7 0.700026 2.549 2.186 2.180 2.175 2.170 

0.73 0.730024 2.550 2.186 2.180 2.175 2.170 

0.76 0.760021 2.552 2.186 2.180 2.174 2.169 

0.8 0.800018 2.554 2.186 2.180 2.174 2.168 

0.82 0.820016 2.555 2.186 2.179 2.173 2.168 

0.84 0.840014 2.556 2.186 2.179 2.173 2.167 

0.86 0.860012 2.557 2.186 2.179 2.173 2.167 

0.88 0.880011 2.558 2.186 2.179 2.172 2.166 

0.9 0.900009 2.559 2.186 2.179 2.172 2.166 

0.92 0.920007 2.560 2.186 2.179 2.172 2.165 

0.94 0.940005 2.561 2.186 2.179 2.172 2.165 

0.96 0.960004 2.562 2.186 2.178 2.171 2.165 

0.98 0.980002 2.563 2.186 2.178 2.171 2.164 

0.99 0.990001 2.564 2.186 2.178 2.171 2.164 

0.992 0.992001 2.564 2.186 2.178 2.171 2.164 

0.994 0.994001 2.564 2.186 2.178 2.171 2.164 

0.996 0.996000 2.564 2.186 2.178 2.171 2.164 

0.998 0.998000 2.564 2.186 2.178 2.171 2.164 

0.999 0.999000 2.564 2.186 2.178 2.171 2.164 

1 1.000000 2.564 2.186 2.178 2.171 2.164 

Table 31.  Results of computed S-wave velocities versus saturation in Alberta Tight Gas Sand at different 

coupling factor values. 

 

 

6.4.1.1.4 Interpreting shear-wave velocity models 

 The measured shear-wave velocity was higher than that of theoretical models 

because the drainage technique in establishing the saturation produced a non-uniform gas 

distribution. The shear-wave velocity decreased at low-water saturation, and then 

increased with increasing water saturation. The low porosity and permeability in tight gas 

sand with the drying technique explains why the shear velocity changed randomly.   
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Figure (32): Curve fit of S-wave velocity in Alberta Tight Gas Sand as a function of water 

saturation from Knight and Nolen-Hoeksema (1990 at a coupling factor of (κ =1 and ∞). Solid 

circles are saturations established using a flow technique. 

 

6.4.2    Sierra white granite 

 Murphy (1985) measured both the compressional and shear-wave velocities in 

Sierra white granite versus water saturation at a frequency of 200 kHz. The saturation 

was established using the drainage technique without any applied pressure. The ultrasonic 

velocity values of P-wave and S-wave versus water saturation are listed in Table (32). 

The sample porosity was very low about 0.008.  
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Average water saturation 

(Sw) 

Compressional wave velocity  VP  

(km/s) 

Shear wave velocity 

VS (km/s) 

0 4.350 2.740 

0.11 4.470 2.740 

0.22 4.520 2.760 

0.33 4.610 2.760 

0.36 4.710 2.830 

0.4 4.730 2.820 

0.45 4.900 2.850 

0.56 4.940 2.850 

0.68 5.060 2.880 

0.78 5.430 2.910 

0.86 5.520 2.970 

1 5.560 2.980 

Table 32. Measured compressional and shear wave velocity values versus saturation in Sierra white granite 

from Murphy (1985).Data taken from Gist (1994). 

 

6.4.2.1   Modeling and interpreting measured and computed ultrasonic velocity 

models 

6.4.2.1.1   Modeling the compressional wave velocity (P-wave)   

     The dynamic shear modulus (µ ) was calculated from the measured shear 

velocity at full-gas saturation by Equation (50). The input and output parameters are 

listed in Table 33. The dynamic shear modulus (µ) did not change with the mass coupling 

factor (κ), because the porosity was very low. As the shear modulus was determined, the 

calculation of the effective bulk moduli (Ksat) began. From Equation (48), the input 

parameters were calculated starting with the frame compressibility ( bC ) which was 

computed from the measured compressional and shear velocities by Equation (49). The 
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rock bulk density increased with water saturation since the density of water is higher than 

that of gas.  

Input  at Sw = 0 Output 

ρf 

(g/cm³) 

ρb 

(g/cm³) 

V
2

S 

(km/s) 
Ø к 

µ 

(Gpa) 

0.000088 2.629 4.796 0.008 1 19.74 

0.000088 2.629 4.796 0.008 1.5 19.74 

0.000088 2.629 4.796 0.008 2 19.74 

0.000088 2.629 4.796 0.008 2.5 19.74 

0.000088 2.629 4.796 0.008 3 19.74 

0.000088 2.629 4.796 0.008 11 19.74 

0.000088 2.629 4.796 0.008 ∞ 19.74 

Table 33. Calculations of dynamic shear modulus at different values of mass coupling factor in 

Sierra White Granite at full gas saturation from Murphy (1985). 

 

Some input parameters are listed in Table 34. The air compressibility was very 

high under no applied pressure.  

 

 

 

 

 
Table 34. Sierra white granite parameters used to calculate the effective bulk moduli. 

 

 

The calculations of the three effective bulk moduli are listed in Table (35). 

 

 

ρw 

(g/cm
3
) 

ρg 

(g/cm
3
) 

ØT 

Cb 

(Gpa
-1

) 

Cs 

(Gpa
-1

) 

β = Cs/Cb (1-β) 

1.0 0.000088 0.008 0.16 0.043 0.39 0.61 
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Sw 

Reuss  

Ksat 

(Gpa) 

Voigt  

Ksat 

 (Gpa) 

Patchy 

 Ksat 

(Gpa) 

0 6.279 6.279 6.279 

0.05 6.250 14.142 6.847 

0.1 6.250 16.061 7.445 

0.2 6.250 19.042 8.740 

0.4 6.250 22.958 11.813 

0.6 6.250 25.416 15.758 

0.65 6.250 25.894 16.925 

0.7 6.250 26.331 18.182 

0.73 6.250 26.576 18.983 

0.76 6.250 26.809 19.822 

0.8 6.250 27.103 21.006 

0.82 6.250 27.243 21.628 

0.84 6.250 27.378 22.271 

0.86 6.250 27.510 22.936 

0.88 6.250 27.638 23.625 

0.9 6.250 27.762 24.339 

0.92 6.250 27.883 25.079 

0.94 6.251 28.000 25.847 

0.96 6.251 28.114 26.644 

0.98 6.252 28.224 27.471 

0.99 6.253 28.279 27.897 

0.992 6.254 28.289 27.984 

0.994 6.255 28.300 28.070 

0.996 6.258 28.311 28.157 

0.998 6.265 28.321 28.244 

0.999 6.281 28.327 28.288 

1 28.332 28.332 28.332 

Table 35. Results of calculated effective bulk moduli of uniform, segregated, and patchy saturation 

models in Sierra white granite at κ=1 and connected-to-total porosity ratio of one, from Murphy 

(1985). 

 

Then the P-wave velocities of the three models were calculated from Equation (51), and 

the compressional wave velocity results of the three different distribution models are 

listed in Table 36. 
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Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

µ = 12  (Gpa) 

Reuss 

 VP 

(km/s) 

Voigt 

 VP 

(km/s) 

Patchy 

 VP 

(km/s) 

0 0.000088 2.629 4.343 4.343 4.344 

0.05 0.050084 2.629 4.342 4.886 4.386 

0.1 0.100079 2.630 4.342 5.056 4.430 

0.2 0.200070 2.630 4.341 5.244 4.523 

0.4 0.400053 2.632 4.341 5.410 4.726 

0.6 0.600035 2.634 4.340 5.486 4.960 

0.65 0.650031 2.634 4.340 5.498 5.024 

0.7 0.700026 2.634 4.340 5.510 5.091 

0.73 0.730024 2.635 4.339 5.516 5.132 

0.76 0.760021 2.635 4.339 5.522 5.175 

0.8 0.800018 2.635 4.339 5.529 5.233 

0.82 0.820016 2.635 4.339 5.532 5.262 

0.84 0.840014 2.636 4.339 5.535 5.293 

0.86 0.860012 2.636 4.339 5.538 5.324 

0.88 0.880011 2.636 4.339 5.541 5.355 

0.9 0.900009 2.636 4.339 5.544 5.387 

0.92 0.920007 2.636 4.339 5.546 5.420 

0.94 0.940005 2.636 4.339 5.549 5.453 

0.96 0.960004 2.636 4.339 5.551 5.487 

0.98 0.980002 2.637 4.339 5.554 5.521 

0.99 0.990001 2.637 4.339 5.555 5.538 

0.992 0.992001 2.637 4.339 5.555 5.542 

0.994 0.994001 2.637 4.339 5.555 5.545 

0.996 0.996000 2.637 4.340 5.556 5.549 

0.998 0.998000 2.637 4.341 5.556 5.552 

0.999 0.999000 2.637 4.343 5.556 5.554 

1 1.000000 2.637 5.556 5.556 5.556 

Table 36. Results of computed P-wave velocities versus saturation of the uniform, segregated, 

and simple patchy models in Sierra White Granite. 

 

 Figure (33) shows Sierra white granite velocity curves versus water saturation for 

both measured and computed compressional wave velocities at a coupling factor of one  

(κ =1), and connected-to-total porosity ratio of one.  
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Sierra White Granite (κ=1,   Ø=0.008)
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Figure (33): Results of P-wave velocity models in Sierra white granite as a function of water 

saturation from Murphy (1985) at coupling factor of one (κ=1), porosity of 0.008. 

 

Because the porosity is very low, some errors in separating the total porosity could have 

given wrong results at the ending point. The ending point did not match the theoretical 

models. The ending point was able to be matched if the porosity decreased to a value of 

0.035. We consider there was an error in measuring the porosity through the laboratory 

experiments. The results of reducing the porosity are shown in Figure 34.  
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Sierra White Granite (κ=1,   Ø=0.0035)

Murphy (1985)
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Figure (34): Curve fit of P-wave velocity models in Sierra white granite as a function of water 

saturation from Murphy (1985). Curve fit parameters include coupling factor of one (κ =1), total 

connected porosity = 0.0035, and patchy segregation model from Sw = 0% to Sw= 86 %. Solid 

circles are saturations established using the drying technique 

 

The patchy segregation model calculations are listed below Table 37. 

Sw K uni K seg Kuni+4/3µ Kseg+4/3µ 4/3µ Keff ρb Vp 

0 23.28 23.28 49.595 49.595 26.315 23.280 2.629 4.343 

0.116 23.25 41.074 49.565 67.315 26.315 24.814 2.633 5.047 

0.24 23.25 47.176 49.565 73.491 26.315 27.309 2.633 5.376 

0.35 23.25 49.513 49.565 75.828 26.315 30.087 2.633 5.429 

0.465 23.25 51.23 49.565 77.543 26.315 33.242 2.633 5.482 

0.58 23.25 52.599 49.565 78.914 26.315 36.882 2.633 5.538 

0.79 23.251 53.42 49.566 79.732 26.315 44.381 2.633 5.538 

0.82 23.251 53.583 49.566 79.898 26.315 45.655 2.633 5.538 

0.87 23.251 53.935 49.566 80.250 26.315 47.957 2.633 5.538 

0.91 23.251 54.144 49.566 80.459 26.315 49.870 2.633 5.538 

1 23.251 54.428 49.566 80.743 26.315 54.428 2.633 5.538 

Table 37. Calculations of the patchy segregation model in Sierra white granite. 
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6.4.2.1.2 Interpreting compressional wave velocity models 

 Most measured P-wave velocity values fit the theoretical model of the patchy 

segregation model. At a high water saturation of Sw >86%, the measured value fits the 

fully segregated model. It is obvious that the very low porosity and permeability in the 

Sierra white granite sample led to a heterogeneous fluid distribution. The measured data 

did not fit the uniform model at all; uniform distribution did not exist. The transitional 

zone dominated most of the measured values.  The measured compressional velocity 

increased linearly with increasing water saturation.  The heterogeneity in fluid 

distribution increased with increasing water saturation.  The lower the porosity and 

permeability of the rock, the faster the segregation of fluid distribution occurred.  

 

6.4.2.1.3 Modeling the shear-wave velocities (S-wave) 

The calculated shear-wave velocity versus water saturation were listed at different 

values of mass coupling factors (κ =1, and ∞), and Table (38) shows the results. The data 

were measured during the drainage cycle. The measured and calculated shear-wave 

velocities versus water saturation were modeled and appear in Figure (35).  
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Sw 
ρf 

(g/cm
3
) 

ρb 

(g/cm
3
) 

к = 1 

µ=19.736 

(Gpa) 

к = 1.5 

µ=19.736 

(Gpa) 

к = 3 

µ= 19.736 

(Gpa) 

к = ∞ 

µ= 19.736 

(Gpa) 

VS  (km/s) VS  (km/s) VS  (km/s) VS  (km/s) 

0 0.000088 2.629 2.740 2.740 2.740 2.740 

0.05 0.050084 2.629 2.740 2.740 2.740 2.740 

0.1 0.100079 2.630 2.740 2.740 2.740 2.740 

0.2 0.200070 2.630 2.740 2.740 2.739 2.739 

0.4 0.400053 2.632 2.740 2.739 2.739 2.738 

0.6 0.600035 2.634 2.740 2.739 2.738 2.738 

0.65 0.650031 2.634 2.740 2.739 2.738 2.737 

0.7 0.700026 2.634 2.740 2.739 2.738 2.737 

0.73 0.730024 2.635 2.740 2.739 2.738 2.737 

0.76 0.760021 2.635 2.740 2.739 2.738 2.737 

0.8 0.800018 2.635 2.740 2.739 2.738 2.737 

0.82 0.820016 2.635 2.740 2.739 2.738 2.737 

0.84 0.840014 2.636 2.740 2.739 2.738 2.737 

0.86 0.860012 2.636 2.740 2.739 2.738 2.736 

0.88 0.880011 2.636 2.740 2.739 2.738 2.736 

0.9 0.900009 2.636 2.740 2.739 2.738 2.736 

0.92 0.920007 2.636 2.740 2.739 2.737 2.736 

0.94 0.940005 2.636 2.740 2.739 2.737 2.736 

0.96 0.960004 2.636 2.740 2.739 2.737 2.736 

0.98 0.980002 2.637 2.740 2.739 2.737 2.736 

0.99 0.990001 2.637 2.740 2.739 2.737 2.736 

0.992 0.992001 2.637 2.740 2.739 2.737 2.736 

0.994 0.994001 2.637 2.740 2.739 2.737 2.736 

0.996 0.996000 2.637 2.740 2.739 2.737 2.736 

0.998 0.998000 2.637 2.740 2.739 2.737 2.736 

0.999 0.999000 2.637 2.740 2.739 2.737 2.736 

1 1.000000 2.637 2.740 2.739 2.737 2.736 

Table 38. Results of computed S-wave velocities versus saturation in Sierra white granite different 

coupling factor values. 
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Figure (35): Curve fit of S-wave velocity in Sierra white granite as a function of water saturation 

from Murphy (1985) at a coupling factor of (κ=1 and ∞).Solid circles are saturations established 

using the drying technique. 

 

 

6.4.2.1.4. Interpreting shear-wave velocity models 

 The measured shear-wave velocity was higher than that of the theoretical models 

for most saturation ranges. At low-water saturation the velocity was in good agreement 

with the theoretical models. Because the porosity and permeability were very low, there 

was no big difference between the theoretical models at different coupling factors. The 

drying technique exhibited higher shear velocities with increasing water saturation.     
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Chapter 7      CONCLUSIONS AND DISCUSSION 

 Laboratory measurements of ultrasonic compressional and shear-wave velocities 

can match the Biot theory by using the separation of the total porosity into acoustically 

connected and disconnected. The ratio of connected to disconnected porosity is a simple 

parameter that allows the ending points of the saturation curves to be matched.  

Using different values of the mass coupling factor in the calculation of the ultrasonic 

velocities helped in matching the values correctly. Changing the mass coupling factor 

helped in better fitting the data. The coupling factor is assumed to be one at ultrasonic 

velocities. Varying the value of the mass coupling factor could balance for the error in the 

assumed value.  

Using the patchy segregation model explained the transitional behavior of the 

measured compressional velocities. The patchy segregation model is controlled by the 

size and distribution of the fluid patches. The size and geometry of the pores are very 

important properties in controlling the shape of the velocity-saturation curves. The 

theoretical models of the uniform, patchy segregation and segregated distribution 

explained the measured data of all type of rocks.  

With our methods presented here, no correction is required for the attenuation and 

dispersion mechanism (Biot and squirt) that could occur at high water saturation, because 

the porosity is separated into acoustically connected to disconnected portions.  

Using the effective solid compressibility and different coupling factor values 

compensated for the theoretical errors in correcting for dispersion, especially in high 

porosity and permeability rocks. 
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Sonic logs and laboratory velocity measurements exhibit large dispersion effects 

that should be corrected in order to have accurate interpretations. Sonic log velocities can 

be affected by the non-uniform distribution of the gas fluid at low gas saturation.  

Non-uniform partially gas saturation occurs in an invaded area around the borehole. 

Invasion corrections need accurate estimation of the water saturation and porosity. The 

fluid distribution in the reservoir is not known, but if we know the velocity then we can 

predict what type of saturation the reservoir has. This situation is the same when the 

reservoir is in production; the fluid saturation and distribution changes with time and the 

reservoir does not have a uniform distribution, but the saturation probably will be a 

patchy segregation of mixed phases of uniform and segregated. 

Measured shear-wave velocities were used in the calculation of the effective bulk 

moduli, an error in measuring the shear-wave velocities will significantly affect the 

calculations. Compressional wave velocities of the sonic log can be predicted using the 

results of this research, if accurate shear-wave velocities are predicted at the saturated 

zones. 
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