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ABSTRACT

This work uses the asymptotic analysis of Biot’s poroelasticity theory
(Goloshubin et al., 2008) to model the seismic response from porous permeable
fluid-saturated reservoir. The Thomson-Haskell propagator matrix method is
utilized for solving the Fast P wave and Biot’s Slow wave propagation through the
multi-layered media. We derived the propagator matrix for the normal incidence
mode conversion between P wave and Biot’s Slow wave and programmed it into a
Fortran code. This code calculates the reflectivity and transmitivity series of a fluid
zone and obtains the influence of the Slow P wave on the seismic signal.

Our results show that for a reservoir with homogeneous fluid saturation,
Slow P wave effect is negligible. If the rock is inhomogeneous in either fluid
saturation or permeability, a significant Slow P wave effect can be observed. The
Slow P wave effect is very sensitive to frequency and has a strong similarity with
the observed low frequency shadows. It is highly possible that the low frequency
shadows frequently observed under gas reservoirs are induced by the fluid flow in

the reservoir and the propagation of the Slow P wave.
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CHAPTER 1: Introduction

Biot’s poroelasticity theory (1956a, b) predicts movements of the pore fluid
relative to the skeleton as seismic waves propagate through the reservoir. This
phenomenon opens an opportunity for investigation of fluid properties of the
hydrocarbon-saturated reservoirs from seismic amplitude. According to Biot, a
compressional P wave in a fluid-saturated porous medium is a superposition of
slow and fast waves. These two waves are always coupled and coexist with each
other, so that in a fluid-saturated porous permeable rock, three types of waves exist:
classical P wave, Shear wave, and Biot’s Slow wave, as shown in Figurel. The left
figure shows wave propagation at a pure elastic boundary, where only P wave and
shear wave exist, the right figure shows wave propagation at a porous permeable
elastic boundary, where P wave, Shear wave and Biot’s Slow wave would exist.

One application of Biot’s theory is the study of Dutta & Ode (1983). They used
Biot’s model to calculate the seismic reflections from a gas-water boundary in a
porous sand reservoir. Velocity, attenuation, and angular-dependent reflection and
transmission at both gas and water layers for the frequency range 0 ~ 10° Hz were
obtained. They concluded that in a fluid-saturated porous rock, loss of seismic
energy is mainly due to the mode conversion to Biot’s Slow wave and they are

fl/ 2

proportional to <, where f is the frequency. There is about 2.5 percent of energy



loss due to mode conversion to Biot’s Slow wave at 100 Hz. Thus, They suggested
that in fluid saturated rock, effects due to Slow wave should be taken into account.
Dutta & Ode (1979a, b) and Dutta & Seriff (1979) studied the attenuation of
seismic wave in a fluid-saturated porous rock with partial gas saturation (White,
1975) using Biot’s theory and modified White’s model, respectively. Both theories
conclude in good agreement with each other. They also pointed out that the energy
dissipation for their model is mainly due to the relative fluid flow from Biot’s Slow
wave. Three different geometries of gas-filled zones are analyzed and compared in
this study. They are: sphere model, shell model, and layer model. While in terms of

magnitude of the attenuation, all three models behave similarly.

Reflected Slow wave

Incident wave Incident wave

Reflected Shear wave Reflected Shear wave

Reflected P-wave Reflected P-wave

(gas sand) (gas sand)

(water sand)

(water sand)
Refracted P-wave

Refracted P-wave

Refracted Shear wave Refracted Shear wave

Refracted Slow wave

Porous Permeable Elastic

Elastic Boundary Bound
oundary

Figure 1. Reflection and refraction of a wave from elastic boundary
and from a porous permeable elastic boundary.



Carcione et al. (2003) utilized a poroelastic modeling algorithm to compute
wave propagation in White’s spherical gas pockets model. Their results also
confirm that the conversion of fast P wave into Biot’s Slow wave is the main
mechanism of attenuation for a partial gas saturated, brine-filled porous rock.

Our work presented here utilizes a propagator matrix method to calculated full-
wave reflectivity series from a fluid-saturated porous permeable rock that
composed of layered media, reflection and transmission coefficients through
medium boundary are provided by asymptotic solutions of Biot’s theory (Silin &
Goloshubin, 2008). In this case, only normal incident scenarios are calculated,
given the full solution of asymptotic analysis of Biot at normal incidence. Our
result shows that Slow wave effects may appear in a seismic section as some real P
wave reflectors. Its relative amplitude strongly depends on frequency and fluid
type. When partial gas saturation exists in a fluid-saturated porous permeable rock,
Slow wave effect is significantly enhanced. Agree with previous studies,
conversion from P wave to Slow wave is the main mechanism of energy loss.
Resonance due to recursive reflection of Slow waves among layers is possible,
which would strongly enhance the seismic amplitude. This occurs only at very
small sample rate such as 0.1 ms, since Slow wave effect can be resolved before all
attenuated. If the sample rate are taken to be 1 ms ~ 4 ms, resonance due to Slow
wave is less likely to occur. Slow wave in this study only refers to Biot’s Slow

wave, classical P wave is also called to Fast P wave.



CHAPTER 2: Asymptotic Calculation

2.1 Fast P wave as incident wave

Present work applies asymptotic formulas of Silin and Goloshubin (2008) to
calculate reservoir models that constitute thin layers of gas and water layers. First, |
study the seismic reflection from a single gas-water contact. In this situation, only
the normal incident P wave is treated as the input wave, the output waves include
both the reflected and transmitted fast and slow waves. They are denoted by R™,

T, R™, T, and can be written in the asymptotic form as follows:

zZ[ - 1+i
RFF = 41 RFF \/7
ZF

TFF :1_,_;1:2 FF1+|\/7

F81+|\/7’ and TF = TFSl+|\/7

where, Z; and Z, are the modified acoustic impedances of medium 1 and 2:

;M |7+ ()’
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Here, M =K +%,u is the plane wave modulus from the dry rock bulk modulus K

and shear modulus x4, v, = /M , (p, is the bulk density) and y,, 7,, are given by:
Lo

1-¢ _,_(A-¢)K
_M[ﬁfqﬂ K, ] and y,, =1 "

BY

where, S, :Ki is the fluid compressibility.
f

Also, first order refelction and transmission coefficients R and T, have the

forms:

rrr = 2200 -RY) oy pee _ZRE-TE)
Z,+7, Z,+7,

We assume i = 1 is the medium above the boundary, i = 2 is the medium below the

boundary. Note that y,, y, are dimensionless parameters. A and D are also

dimensionless parameters given by:

Azl 7/2M1 _ VM2 }ZZZ ’
(7M1) +Vm (7,\42)2"‘7/;2 Z,+2,

2,7
D=—10u Tl L Ubl\/ 7M1 +7ﬁ1 Doz \,(7M2)2+7ﬂ2jl
VJ/K 2

Ymi¥m2 7p2

where, y, and y, are:



p, is the bulk density and p; is the density of the pore fluid.
Finally, K , and K, are given by:

K K

K is the bulk modulus of solid grain, K is the dry rock bulk modulus, and ¢ is
porosity.

The asymptotic solutions provide approximations to Biot’s theory, however,
more explicit descriptions on the rock and fluid properties are obtained in
asymptotic formulas. Table 1 summarizes the input parameters needed in this
calculation. Where, Ky and pq are the bulk modulus and density of the solid grain;
Kary and pary are the dry rock bulk modulus and shear modulus; ¢ and « are porosity
and permeability of the rock; K¢, pr, and ms are the bulk modulus, density and
viscosity of the filling fluid, respectively. Note that all these input parameters are
no more than the ones used in doing a fluid substitution with Gassmann’s equation.
They can be easily acquired from log data. Therefore, wider applications of Biot’s
theory may be obtained through these asymptotic solutions. (Goloshubin et al.,

2008).

Table 1. Input properties for asymptotic Biot’s calculation.

. Dry Dry .
Input Grain Grain rock rock Fluid Fluid | Fluid
bulk Poro. Perm. bulk .
prop. mod dens. bulk shear mod dens. | visco.
' mod. mod. '
Symbol | Kq Py Kay | Hary ) K Kt oli ns




Further more, velocity (m/s) and attenuation coefficients in units of (1/m) for

Fast and Slow waves can be calculated from:

2
VF=y, 1+
7p

Ve =y, 2|—g|2+...;
Vgt Vm

F_ O Vg QF )
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Vo \ 757w 450

@ |Tat T,
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where, v, = /M ,and ¢§ ¢ are given by:
Ps

2 2
+ +
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Y57, 75w +75) 7,

2.2 Biot’s Slow wave as incident wave

Asymptotic solution obtains the reflection and transmission coefficients from
incident Slow wave converts to both Fast P wave and Slow waves as follows:

1
- Zgl ——M zkgzgosz + Z(?ZM 1k081§0s1
RSS — '\/Z .
1
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Where, kOS :i ’7ﬂ+7l\2/1 , ZOS :7/M—7ﬂ and §OS :_i.
Vs M 7m

2.3 Asymptotic calculation on gas-water contact

In the first calculation using asymptotic formulas of Biot, we use the gas-water
contact model, i.e., a gas sand overlying a water sand, while the rock properties for
both the gas zone and water zone are kept same. For comparison purpose, all the
properties are taken from Dutta & Ode (1983) for unconsolidated, Texas Gulf coast

sand at depth of about 1500 m, as shown in Table 2.

Table 2. Rock and fluid properties of gas and water saturated sand.

. Dry Dry .
Input Grain Grain rock rock Fluid Fluid | Fluid
bulk Poro. Perm. bulk .
prop. dens. bulk shear dens. | visco.
mod. mod.
mod. mod.
Kg p Kar g K Ks P ut
Symbol g y Y
y (Gpa) | (g/cc) | (Gpa) | (Gpa) ¢ (darcy) | (Gpa) | (g/cc) | (cp)
Gas
one 35 2.65 1.7 1.855 0.3 1 0.022 0.1 | 0.015
Water
z0ne 35 2.65 1.7 1.855 0.3 1 2.4 1 1




2.3.1 Velocity versus frequency

The velocity versus frequency plot are displayed in Figure 2 for both P wave

and Biot’s Slow wave in gas layer and water layer, an extrapolated curve from

Dutta & Ode is also plotted as a comparison to the Slow wave velocity from

present calculation. P wave velocity for both water and gas layers stay as constant

through out the 10 ~ 10° Hz frequency range, while a strong velocity dispersion is

calculated for the Slow wave, both in water and gas layers. In the low seismic

frequency range (10 ~ 100 Hz), the asymptotic calculations show good agreement

with exact Biot’s calculation of Dutta and Ode (1983).
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Figure 2. Velocity dispersion of the P wave and Biot’s
Slow wave in gas and water saturated porous rocks.



2.3.2 Attenuation versus frequency

The attenuation of the P wave and Biot’s Slow wave in water and gas saturated
rocks are displayed in Figure 3. The attenuation of Biot’s Slow wave is about 10°
times greater than that for the Fast P wave at the seismic frequency range. By
comparing the curves of asymptotic calculations (blue) and Dutta & Ode’s exact
Biot’s calculations (red), strong similarities are found for both gas and water
saturated rocks at low frequencies below 10° Hz. High frequencies, on the other
hand, proved to have a low agreement between these two calculations. Attenuation
of P wave is tiny with respect to the attenuation of Slow wave, however in a fluid
saturated zone, the attenuation of P wave is enhanced by a mechanism of
conversion to Biot’s Slow wave. Studies of Dutta & Ode (1979a, b) and Dutta &
Seriff (1979) have showed this trend. Asymptotic calculations provide similar
results with their studies in terms of attenuation.

Lists of reflection and transmission coefficients for up and down going waves at
22 Hz are summarized in Table 3. Reflection coefficient of Fast P wave to Slow
wave (Rfs) in water sand (equals to 0.025977), is much larger than the reflection
coefficient (Rfs) in gas sand (equals to -0.000105); transmission coefficient of Fast
P wave to Slow wave (Tfs) from gas sand to water sand (equals to -0.003897), is
much larger than the transmission coefficient (Tfs) from water sand to gas sand
(equals to 0.000697). This suggests that the amplitude of Slow P wave always
increases going from gas zone to water zone, and decreases going from water zone

to gas zone. Slow P wave needs relatively incompressible fluid to support it.
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Table 3. Results of asymptotic calculations at 22 Hz on reflection and
transmission coefficients for up and down going waves at the gas-water contact

shows in Table 2.

P incidence Slow incidence P incidence Slow incidence
Wave Type . ) : .
Down going Down going Up going Up going
Reflection to -0.263028 0.453893 0.251292 -0.444078
P wave
Reflection to -0.000105 -0.960673 0.025977 0.960673
Slow wave
Transmission to 0.740764 -0.266208 1.276572 0.757167
P wave
Transmission to -0.003897 0.759428 0.000697 0.759428
Slow wave
Attenuation vs Frequency Attenuation vs Frequency
25 T T T 350 T T T
3001
2 Fast Wave Slow Wave
| 2501 !
T8t r 3
= ; =200 !
s | [ Gas ! s | |- Gas /
® — Water ! ® —— Water !
E --=-- Dutta & Ode, Gas H E 150k --6-- Dutta & Ode, Gas 7
g 10k —e— Dutta & Ode, Water .': i E —e— Dutta & Ode, Water .,"
100f
ol ;
50 "/'
T e oo
G 1 .AZ AE 1 I;-‘ ! 3 4 - 3 a
10 10 10 10 10 10 10 10
Frequency (Hz) Frequency (Hz)

Figure 3. Attenuation coefficients vs. Frequency and comparison with
Dutta & Ode’s calculations.
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According to Table 3, the largest value of the coefficient for conversion from
Fast P wave to Slow P wave is the reflection from water sand to water sand (equals
to 0.02597). This amount is similar to Dutta & Ode’s (1983) study, that they
observed 2.5% of energy loss due to mod conversion from P wave to Slow wave.
Since Slow P wave attenuates fast, most of the Slow wave energy would dissipate
through fluid oscillations.

Therefore, from the comparisons of velocity and attenuation, asymptotic
calculation provides similar results with exact Biot’s solution at seismic frequency
range. Since asymptotic calculation simplifies the algorithm of Biot’s theory and
relates the model more explicitly with rock and fluid properties, it can be more
practically used as a tool for seismic inversion, simulation and reservoir

characterization, etc.

2.3.3 Reflections versus frequency

The reflection and transmission coefficients for Fast P wave as an incident
wave entering from gas zone onto a gas-water contact are displayed in Figure 4.
Both the conversion to Fast P wave and Biot’s Slow wave are plotted. Reflection
(Rff) and transmission coefficient (Tff) are compared with the results from classical
elastic calculations. We can see a significant frequency dependency of the Rff and
Tff, while the classical Rff and Tff are not dependent on frequency. The polarity in
our reflection coefficient is from European convention. A negative reflection

coefficient exists for wave goes from low impedance rock to high impedance rock.

12



Phase angle in degrees for Rff, Tff, Rfs, and Tfs are also plotted as a function of
frequency. As frequency increases, phase angle increases for Rff and Tff. Rff phase
increases faster than that for Tff phase, but generally small phase angles being less
than 5 degrees are observed for both Rff and Tff within seismic frequency range.
Since Rfs and Tfs only have first order term with respect to frequency in
asymptotic formulas, their phase stays as a constant throughout all frequency range.

In Table 4, the 100 Hz and 10 KHz results from asymptotic calculations and
from Dutta & Ode’s calculations at normal incidence are summarized. Correct the
polarity difference between asymptotic calculation and Dutta & Ode’s calculation,
their values for Rff and Tff are very close at 100 Hz. At 10 KHz, both values for
Rff and Tff are very different. According to the comparison for velocity and
attenuation, asymptotic calculation will no longer match with exact Biot’s
calculations for high frequency above 1 KHz, the relative big deviation at 10 KHz
can be expected. This comparison further proves that Asymptotic calculation
matches with the exact Biot’s calculation at seismic frequency domain, thus it can

be used for modeling and analysis to seismic data.

13
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Figure 4. Reflection and transmission coefficients
and phase angle for the wave propagation at the gas-
water contact in Table 2. Incident wave is from gas

sand.

Table 4. Comparison between asymptotic calculations and Dutta & Ode’s
calculations on the reflection and transmission coefficients (Rff and Tff) for

the gas-water contact in Table 2, normal incidence.

Frequency 100 Hz 10 KHz
Type Rff Tff Rff Tff
Asymptotic 0.241 0.742 0.061 0.769
Dutta & Ode 0.246 0.744 0.175 0.690
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CHAPTER 3: Modeling Multi-layered Media

3.1 Propagator matrix method

In this section, we derive the classical propagator matrix method to obtain 1-D
reflectivity and transmitivity at a single frequency for multi-layered fluid-saturated
porous permeable media. Calculation is only for fluid zone and assumption is that
both source and receiver are located at the half space. Robinson (1967) provided a
good demonstration on applying propagator matrix method to solve P wave
propagation in layered media with z-transform. More general description of this
method is presented in Aki & Richards (1980). Here we modified the algorithm to
include the mod conversion between P wave and Biot’s Slow wave at normal
incidence.

Figure 5 shows a boundary condition of the Fast and Slow P-waves traveling
vertically at an arbitrary layer ;. The ray paths are drawn with time displacement
along the horizontal axis, which helps in displaying the vertically traveling rays
through time axis. Indeed, all the ray paths are perpendicular to the horizontal
plane. In our treatment, each layer is assumed to have same one-way travel time for
P wave propagating through one layer. And this one-way travel time is taken to be

one unit of time for Fast P wave; and t unit of time for Slow P wave. The 7 value

15



changes from layer to layer, depends on the ratio of the velocities of Fast P wave

vfast and Slow P wave vslow. Namely, for an arbitrary layer j, we have:

_ vfast,
vslow/.

7

In Figure 5, we denote the downgoing Fast P wave at the top of layer j by d;(z),
and the downgoing Slow wave at the top of layer j by d;’(z). Then, if there is no
attenuation in layer j, the downgoing wave at the bottom of layer ; will be the same
waveform delayed by the one-way travel time for the layer ; (which is defined as
one time unit for Fast P wave, and 7 time unit for Slow P wave); hence the
downgoing Fast P wave at the bottom of layer j is dj(z-1), the downgoing Slow P
wave at the bottom of layer j is d;’(t-7). Similarly, we denote the upgoing Fast P
wave at the top of layer j by u;(z), and the upgoing Slow P wave at the top of layer j
by u;’(¢). Then the upgoing Fast P wave at the bottom of layer ;j is the same wave
but advanced by one time unit, i.e., u;(z+1), and the upgoing Slow P wave at the

bottom of layer j is u; '(t+ 7).

Layer j

Interface j

Layer j+1

Figure 5. Schematic plot of wave propagation through layer j at
normal incidence. The horizontal displacement corresponds to time.
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If attenuation of waves in layer j is considered, then, the downgoing Fast P
wave at the bottom of layer j becomes 4 - dj(t-1), where A, is the attenuation of P
wave. The downgoing Slow P wave at the bottom of layer j becomes A,- d;’(t-1),
where 4, is the attenuation of Slow wave. Similarly, the upgoing Fast P wave at the
bottom of layer j becomes A_f‘l- u;(t+1), and the upgoing Slow P wave at the bottom
of layer j becomes 4, u;’'(t+1). The expressions of 4,and 4, are shown below:

A, =exp(-a’h;) = exp(-a] (vast; - dt));
A, =exp(-a;h;) =exp(-a; (vfast, - dt)),
where, dt is the unit of time or sample time; ¢, is the attenuation coefficient of
Slow P wave and o_z]-f is the attenuation coefficient of Fast P wave in units of (m™).

According to the boundary condition in Figure 5, we can obtain the
relationships between all waveforms at interface j with the corresponding reflection
and transmission coefficients. We use rff to represent the reflection coefficient of
Fast P wave to Fast P wave while the incident P wave is downgoing, and rffup to
represent the reflection coefficient of Fast P wave to Fast P wave while the incident
Fast P wave is upgoing. Similar denotations are used for other reflection and
transmission coefficients.

The wave d;+1(2) is made up of four parts, i.e., the parts due to transmitted
portion of d;(¢-1) and d;’(t-7), and the parts due to the reflected portion of u;.1(2) and
uj1°(¢). Thus it gives the equation:

d o (O)=tff, A, -d (t=1)+tsf, A -d (t—7 )+ rffup, -u, (O + rsfup, -u (1)

17



Similarly the wave d;.1’(z) is made up of four parts, i.e., the transmitted portion of
di(t-1) and d;’(¢-7), and the reflected portion of u;.1(2) and u;+1’(z). Thus we have the
equation:
doO=tfs, A, -d (t=1)+tss,- A -d (t—1,)+1fsup, u, (O +rssup, -u',(2)
Similarly the waves u;(t+1) and u;’(r+17) are made up of four parts, i.e., the
reflected portion of d;(¢-1) and d;’(¢-7), and the transmitted portion of u;.1(2) and

u;+1'(t). Thus we have the equations:
A/1 u(t+l)=rff, - A, -d (t=1)+rsf, - A -d}(t— T,)+iffup; cu () +isfup,; 'u;ﬂ(t);
AT u(tvr ) =1fs, Ay d (t=1)+7ss, A d (t—1,)+tfsup (O +tssup o u (1)
We define D;(s) as the Laplace transform of dj(2), i.e.,

D;(s) = de (H)edt -

D;(s) represents all the downgoing waveforms at the top of layer ;.
The Laplace transform of d;(z-1) is

j d,(t~1)e"dt = j d,(t)e "t ,

0 0
If we define z = ¢, then,

[a,(t-Dedt=2"D,(s).
0

lej(s) represents all the downgoing waveforms at the bottom of layer ;.
Thus, in Laplace transform, the waveform at the bottom of layer j differs with

the one at the top of layer j by a multiplication of z'. We can also view D;(s) as a
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polynomial of z, then, the multiplication of D;(s) by ' corresponds to a shift of the
polynomial of D;(s) by one step to the right. Also the multiplication of two
waveforms in Laplace transform is equivalent to a convolution of their polynomial
coefficients in z. These characters are very useful in doing subsequent polynomial
operations.

Similarly, we can find the Laplace transforms for other waves in above

equations and construct four new equations in Laplace transforms, namely:
D y(s)=tff ;- A, -2'D(s)+tsf, - A -2V D(s)+rffup , -U, y(s) + rsfup - U 4(s);
D (s)=tfs,- A, -z'D (s)+iss, - A -z"D(s)+rfsup, -U . ,(s) +rssup; - U, (s);
AU () =1, A - 2Dy(s) 7, - A, 27 D (s) + tffup , U o) + tsfup U (5);
A z U (s)=1fs;- A, -2'D(s)+rss; - A -z" D (s)+ tfsup U, (s) + tssup ;- U, (s).

Rearrangement of the above equations leads to the following four equations:

D,, (s) = ;- A4, -le_/ (s)+ tsf; - A, Ak D/ (s)+ rffup; -UM(S) +rsfup -U_;.H(s) (1)
D»II.+1 (s)=tfs,- 4, -Zle (s)+1ss; - A, -z D/ (s)+rfsup, U, (s)+rssup,; - »;.+1 (s) (2)
—}”ﬁ(. 1 —VSf. T~ —tSﬁ/lp 1
_ = L. A, -Z2'D, L.4-zD, LU = .4 (s) (3
U= A ZD0) b A2 D)+ o)+ mpj IR YIOLS)
Uuls) = f, Ay 2D, (5)+——L 4,27 D) (s) + ~{fsup, U,a(s)+ AU (5) (@)

: tssup; tssup; tssupj

Substituting equation (4) into equation (3) leads to:

—tssup, -1ff; +isfup, - 1fs; —tssup, - rsf; +isfup, -rss;
tffup; - tssup; —tsfup, - tfsup,
Issup;

tffup, - tssup, —tsfup, - tfsup,

A, -lej(s)+

‘A -z" D} (8)+
tffup; - tssup; —tsfup, -tfsup, (5)

—tsfup, 4.
tffup, - tssup, —tsfup, - tfsup] 4
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Substituting equation (5) into equation (4) leads to:

—1fS,; - Yfup; +1f; - fsup,

Uffup; - tssup, —tsfup; - tfsup,
~tfsup,

tffup, - tssup, —tsfup, - tfsup, .

—rss; - tffup, +rsf; -tfsup, ,
. ﬁp, f] i B ’A.Y’ZT/D/'(S)"‘
tffup; - tssup; —tsfup; - tfsup, (6)
Hffup, _
Hfup, - tssup, —tsfup, - tfsup;

Ul/'+1 (S ) =

-A,-2'D,(s)+

A7 27U (s)+ A7 27U (s)

Substituting equation (5) and equation (6) into equation (1) leads to:

Uf; - Uffup, - tssup, —tsfup, - tfsup;) + rffup, - (~tssup, -rff, +tsfup; - 1f5,) .
Hfup, - tssup, —tsfup, - tfsup,
rsfiup, (s, - ffp, + - fsup))
tffup, - tssup; —tsfup, - tfsup,
{tsfj (tfup, -tssup; —tsfup, - tfsup,) + rffup; - (~tssup; - rsf, + tsfup, -rss,) . (7)
Ufup, - tssup; —tsfup, - tfsup,

D/'+l(s) :[

1-Af-lej(s)+

rsfup, - (=rss, -tffup; +rsf, - tfsup;)
iffup; -tssup, —tsfup; - tfsup,

~offup, -tsp, + rfp, tffp,
tffup, -tssup, —tsfup, -tfsup, °

:|'AX-ZT/D;(S)+

rﬁ‘upj -Issup; —rsfupj -tfsupj PR
A, z27U, (s)+
Hffup; -tssup, —tsfup, - tfsup,

ZU()

Substituting equation (5) and equation (6) into equation (2) leads to:

ifs; - (tffup, - tssup; —tsfup, -tfsup;) + rfsup, - (~tssup, - rff; +tsfup, - 1f5,) .
tfup, - tssup; — tsfup, - tfsup;
rssup, -(-1fs, - ffp, + i, - foup,)
Hfup, - tssup; —tsfup, - tifsup,

Dlj-f-l(s) =|:

]Af 'ZlD/(S)"'

(8)

tss; - (tffup, - tssup; —tsfup, - tfsup;) + rfsup, - (~tssup, - rsf, +tsfup, - rss;) N
tfup, - tssup; — tsfup, - tfsup,
rssup; - (=rss; - tffup; +rsf; - tfsup;)
Hfup, - tssup; — tsfup, - tfsup,

—rfsup; - tsfup; + rssup; - tffup, RN )
tffup; - tssup, —tsfup, - tfsup, !

]A‘v -zrfD;.(s)+

rfsup; - tssup; —rssup; - tfsup, e

- y ~z’1Uj (s)+
fup; - tssup; —tsfup; - tfsup,

According to equation (7), (8), (5) and (6), a simple matrix form can be obtained:
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Dj+1 (S) D/' (S)

D) | _ 2’ AR ©)
U,a(s)| thup, -tssup, —tsfup tfsup, = '™ |U,(s) |
U"/'+1 (S) Uj (S)

here [M]] is the propagator matrix for Fast P wave and Slow P wave traveling
vertically through a porous, permeable fluid-saturated layer j. The matrix element
of [M;] can be found from equations (7), (8), (5) and (6), and are summarized in
appendix 1. Thus given the asymptotic calculations of the reflection and
transmission coefficients for each layer, we could recursively calculate all the
downgoing and upgoing waveforms Dj(s), D;’(s), Uys) and U;’(s) in Laplace
transforms from layer O to layer k+1, where layer 0 and layer k+1 are two half

spaces (Figure 6).

source
.\/ layer 0
\4 layer 1
layer 2
layer k
layer k+1

Figure 6. Schematic plot of the propagations of
waves through multi-layered media from layer 0 to
layer k+1.
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From layer 1 to layer k+1, matrix propagation provides the following relation:

here, M1, M, ..

_Dk+l(S)_
Dllc+l(s)
Uk+1(S)

_Ul;+l(S)_

=%
H(Wupj “ISsup ; _tSfUPj 'tﬁ”Pj)
jL

M,..M,M, -

_Dl (S)_
Dy(s)
Uy(s)

[Us(s) ]

., My are the propagator matrix of layer 1, 2,..., £.

If we assume that the source is placed on the surface, i.e., the bottom of layer 0,

then there is no time delay from layer 0 to layer 1. Thus, by setting the time delay z

=1 in equation (9), we can obtain the waveforms from layer 0 to layer 1 by:

_Dl(s)—

Dy(s)
U, (s)

[U(5) ]

1

" tffup, -tssup, — tsfup, - fsup,

M, -
Uy (s)

_Do (S)_
Dy(s)

LUo(s).

here, My is the propagator matrix of layer 0. Together with the matrix propagation

from layer 1 to layer £+1, we could derive a relation between the waveforms of

layer 0 and layer k+1 by the following equation:

_Dk+1(s)_
Dl'c+1(S)
Uk+1(S)

_Ullf+l (S)_

where,

C

k

[ 1Wup, - tssup; —tsfup , - tfsup,) 7=

J=0

V4

k
pry

T

=%
H(tﬁf”p_/ “Issup —tsfup_/. 'th”pj)
=0
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_Do(s)_

: Dy(s)|
'HMJ' Usts) =C-N,-
| Uy (s).

;and N, :ﬁMj.

_Do (S)_

[ Uo(s).

Dy(s)
Uy(s)




Matrix M, and M, have the following forms and the explicit expressions can be

found in appendix 1:

ML) M,12) M,13) M,(L4)
M,1) M,22) M,(23) M, (24
ITIM,@BY) M,(32) M,(33) M,(34)|

M(41) M,(42) M,(43) M,(44)

and,

M,1) M,12) M,13) M,14)
My(21) My(2,2) M,(23) M,(24)
M,(31) M,(32) M,(33) M,34)]|
My(41) My (42) M,(43) M,(44)

3.2 Reflectivity and transmitivity series
We already obtained the matrix propagation from layer 0 to layer £+1, thus we

have the equation below:

[ Dya(s) ] [ Dy(s)| N.@LD) N@L2) N.@L3) N,L4)] [De(®)]
Dy (s) _C.N. . Dy(s) _C N,(21) N,(22) N(23) N(24)| | Dy(s)
Un® | U] [ NBD N2 N33 NGB | |Upls) |
U, (5) | Uy(s) | N4 N(42) N.(43) N, (44)] |U,(s)

where, matrix N; is obtained by recursive multiplication of propagator matrix My

through M, i.e.,

k
Ny=M,.M-M,=]]M,.
j=0
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Note that each matrix element of propagator matrix A4 is a polynomial in z

1

(Appendix 1), for example, M (1,3) = (rffup; - tssup, — rsfup, -tfsupj)-Af*l-zr-’_ ,
which has only (z-1)-th order term in z polynomial. And notice that the highest
order non-zero term in matrix M; has (2z)-th order, they are M;(1,2), M;(2,2),
M;(3,2) and M,(4,2), thus we can define an array with length of (2z7+1) to represent
the matrix element of A4;, where the first value of the array corresponds to the zero
order term in z polynomial, and the (27+1)-th value of the array corresponds to the
(27)-th order term in z polynomial. The multiplication of each matrix element of 4,
is equivalent to convolution of its corresponding arrays. Thus, all the matrix

operations can be applied to our matrix propagation process except for replacing

the multiplication of matrix elements by a convolution of the corresponding arrays.

The impulse input corresponds to a downgoing Fast P wave with amplitude
equals to 1, i.e., Do(s) = 1 and we assume there is no input Slow P wave, thus, Dy’
= 0. And there are also no upgoing waveforms from the bottom half space (layer

k+1), thus, Ui+1 = 0 and Ui+, = 0. This gives:

D,..(s) Dy (s) ] N@) N(@12) N(@L3) N,@14)]][1
D/;+1(S) _C-N. . D(I)(S) _C. N.(21) N,(22) N.(23) N, (24) _ 0
0 U, () N.3L) N,32) N,3B3) N,GB4)||Us)|
0 | Up(s) N.(41) N,(42) N,(43) N, (44)] [Uy(s)

Expand the above equation, we have:
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0=N,(81)+N,(33)-Uy(s)+ N, (34)-Uy(s)
0=N,(41)+ N, (43)-U,(s) + N, (4,4)-U,(s)

Solve these two equations for Uy(s) and Uy '(s), we obtain:

N,(4,4)-N,(31)—N,(34)-N,(41)
N,(34)-N,(43)-N,(33)-N,(44)’

Uy(s) =

N,(33)-N,(41)-N,(31)-N, (43

Us(s) = N,(34) N, (43)-N,(33)-N,(4,4)

Uo(s) and Uy ’(s) as polynomials of z, are the reflectivity series of P wave and Slow

wave, respectively.

We also have the equation for Dy.1(s) as follows:
D, 1 (s)=C-[N, (L) + N, (13)-Uy(s) + N, (L,4)- U(‘)(S)] ;

where,

C=—
[ 1 Wup; - tssup; — tsfup , - tfsup,)
=0

Substitute Uyp(s) and Uy ’(s) into this equation for Dy.1(s), we obtain:

N,(L1)-N,(34)-N,(43)-N,(11)-N,(3,3)-N,(4,4) .
N,(34)-N,(43)-N,(33)-N,(4,4)

N,(L3)-N,(44)-N,(31)-N,(13)-N,(34)-N,(4.)) N
N,(34)-N,(43)-N,(33)-N,(4,4)

N,(L4)-N,(33)-N,(41)-N,(14)-N,(31)-N,(4,3)
N,(34)-N,(43)-N,(33)-N,(4,4) '

D, 4(s) = C'[

Di+1(s) as a polynomial of z is the transmitivity series of the impulse P wave

propagating through a multi-layered media.
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3.2 Results of calculations

Figure 7 shows the reflectivity series vs. frequency from seven layers of rock
with inhomogeneous fluid saturation (Table 5) and Figure 8 shows the same plot
for a homogeneous fluid saturation with slightly different rock properties (Table 6).
We can see a remarkable influence of the Slow P wave for the rock with
inhomogeneous fluid saturation, while for the rock with homogeneous fluid
saturation Slow P wave effect is very small. This is consistent with previous studies
(Dutta & Ode, 1979a, b; Carcione et al., 2003).

It should be noted that previous studies recognized the high attenuation in the
inhomogeneous fluid-saturated rock is due to the energy flow to Slow P wave,
while in our case, the signal from mode conversion to Slow P wave is directly
calculated.

Also, we can see in general the lower frequency signals last longer than higher
frequencies. This phenomenon is similar to the low frequency shadows that are
often observed beneath gas reservoirs. Since gas reservoir would introduce some
degree of inhomogeneity in fluid saturation, such as gas bubbles. According to
Figure 5, we think Slow wave may be a major cause for the low frequency

shadows.
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Table 5. Input rock and fluid properties. Rock properties are the same for each
layer, while fluid properties are changed alternatively between gas and water.
Layer thickness equals to 0.1 ms for P wave.

. Dry Dry .
Sret | Grain | rock | rock . Fluid bulk | Fluid | Fuid
ulk densi Porosity | Permeab. . visc-

ensity bulk shear modulus | density .
modulus osity

modulus | modulus

Kg Pg Kary Hary o K Kt pr ul
[Gpa] | [g/cc] | [Gpa] | [Gpa] [darcy] | [Gpa] | [g/cc] | [cp]
38 2.65 1.46 1.56 0.3 2 0.025 0.15 | 0.01

38 2.65 1.46 1.56 0.3 2 2.42 1 1
38 2.65 1.46 1.56 0.3 2 0.025 0.15 | 0.01
38 2.65 1.46 1.56 0.3 2 0.025 0.15 | 0.01
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Figure 7. Reflectivity series vs. frequency from seven layers of porous
permeable sands with gas and water saturated alternatively (Table 5).
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Figure 8. Reflectivity series vs. frequency from seven layers of porous
permeable sands with only water saturation (Table 6).
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Table 6. Input rock and fluid properties. Fluid properties are the same for each
layer, rock properties are changed alternatively. Layer thickness equals to 0.1 ms

for P wave.
. Dry Dry .
Sre | Grain | rock | rock . Fluid bulk | Fluid | Fluid
ulk densi Porosity | Permeab. . visco-
ensity bulk shear modulus | density .
modulus sity
modulus | modulus
Ky Pg Kary Mdry b K Kt pf Ui
[Gpa] | [g/cc] | [Gpa] | [Gpa] [darcy] | [Gpa] | [g/cc] | [cp]
38 2.65 1.46 1.56 0.3 2 2.42 1 1
35 2.65 1.7 1.855 0.1 0.1 2.42 1 1
38 2.65 1.46 1.56 0.3 2 2.42 1 1
38 2.65 1.46 1.56 0.3 2 2.42 1 1

The number of very thin fluid-saturated permeable layers has also effect on the

seismic response. Figure 9 shows reflectivity series from nine layers of alternative

gas/water sands, we can see that the seismic signal is enhanced as compared to

Figure 7.
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Figure 9. Same with Figure 7, only the number of total layers equals to nine.

In conclusion we would like to mark: 1) low frequency asymptotic description
of the Biot’s model was applied based on matrix propagator technique; 2) the
asymptotic description provides accurate calculations at seismic frequencies; 3)
Slow P wave effect strongly depends on frequency and in case of a reservoir with
high permeability and inhomogeneous fluid saturation the Slow P wave effect must

be taken into account.

30



CHAPTER 4: Future Directions

4.1 Improvement of propagator matrix method

Although the basic theory and matrix element of the propagator matrix for Fast-
Slow P wave conversion have been derived, numerical instability due the limitation
of the computer precision will lead to very serious problems. These problems make
the application of the Propagator Matrix method only suitable for very thin layer
and high permeable rocks. Jocker et al (2004) studied the numerical instability for
propagator matrix method applied to Biot’s model. In order to solve this numerical
instability problem, some modification on the algorithm is needed. Studies of
Dunkin (1965), Schmidt and Tango (1986), Levesque and Piche (1992) suggested
some modification methods. Thus, to improve the numerical stability of the

propagator matrix method applied in this study can be one of the future directions.
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4.2 Permeability attributes

Based on the Asymptotic algorithm in Goloshubin and Silin (2005), a relative
permeability attribute has been derived and applied on seismic data analysis. In
Focus software version 5.4, PERMATR module allows users to convert the seismic
amplitude traces into relative permeability traces. Examples of how PERMATR
works are shown in Figure 10 and Figure 11. The seismic data is from South
Marsh, Gulf of Mexico. There is a water well (SM_238_88) located at INLINE
2170, XLINE 1033. We can see the reservoir zone at about 2.7 second from Figure
10 and Figure 11. The high permeable sand is more apparent from the relative
permeability traces. Thus, another possible future project can be on mapping of the
high permeability zone from seismic data using PERMATR module, convert the
seismic amplitude trace into permeability trace and find out the difference between
them.

Future project related to this permeability attribute can also be trying to

improve the permeability attributes and make it more reliable and more accurate.
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Figure 10. (a) The seismic amplitude tFace for INLINE 2170, (b) the relative
permeability trace for INLINE 2170. The reservoir zone is indicated by arrow.
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Figure 11. (a) The seismic amplitude trace for XLINE 1033, (b) the relative
permeability trace for XLINE 1033. The reservoir zone is indicated by arrow.
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Appendix 1: Matrix Elements of M; and My

M (1,2) = [tff; - (tffup, - tssup; —tsfup; - tfsup;) + rffup; - (—tssup; - rff; +tsfup, - rfs;) +
rsfup; - (~rfs, -tffup, + rff, -tfsup,)]- A, -2

M;(1,2) =[tsf; - (tffup; - tssup; —tsfup; - tfsup;) + rffup; - (—tssup; - rsf; +tsfup; - rss;) +
rsfup; - (—rss; - tffup; + rsf; - tfsup;)]- A - Al

M ;(1,3) = (rffup, -tssup, — rsfup, -tfsup,)- A, - z"

M (1,4) = (—rffup, -tsfup, + rsfup, - tffup,)- A" -1

M;(2,1) =[tfs; - (tffup; - tssup; —tsfup; - tfsup,) + rfsup; - (~tssup; - rff; +tsfup; - rfs;) +
rssup; - (~rfs, -tffup, + rff, -tfsup,)]- A, -2

M;(2,2) =tss; - (tffup; - tssup; —tsfup; - tfsup;) + rfsup; - (—tssup; - rsf; +tsfup; - rss;) +
rssup; - (-rss; -tffup, + rsf, -tfsup,)]- A - 2°"

M;(2,3) = (rfsup; - tssup; —rssup; - tfsup;) - A YAl

M;(2,4) = (—rfsup; - tsfup; + rssup; - tffup;) - Agl -1

M, (31) = (~tssup, - rff, +tsfup, -rfs;)- A, -2

M (3,2) = (~tssup, - rsf, +tsfup, - rss,) - A - 2°"

M, (33) =tssup, - A, -z

M, (3,4) =—tsfup, - A" -1

M, (41) = (—rfs; - tffup, +rff, -tfsup,)- A, - 27"

1

27
M;(4,2) = (-rss; - tffup; +rsf; -tfsup;) - A -z
;-1

-1 i
M;(4,3) = —tfsup; - A; ~-z

-1
M;(4,4) =tffup, - A " -1
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M, (11) = tff, - (tffup, - tssup, — tsfup, - tfsup, ) + rffup, -

rsfup, - (—rfs, - tffup, + rff, - tfsup,)

M, (1,2) =tsf, - (tffup, - tssup, — tsfup, - tfsup, ) + rffup,
rsfup, - (—rss, - tffup, + rsf, - tfsup,)

M, (1,3) = rffup, - tssup, — rsfup, - tfsup,

M, (1,4) = —rffup, - tsfup, + rsfup, - tffup,

M, (22) =tfs, - (tffup, - tssup, — tsfup, - tfsup,) + rfsup,
rssup, - (—rfs, - tffup, + rff, - tfsup,)

M, (2,2) =tss, - (tffup, - tssup, —tsfup, - tfsup,) + rfsup,
rssup, - (—rss, - tffup, + rsf, - tfsup,)

M, (2,3) = rfsup, - tssup, — rssup, - tfsup,

M, (2,4) = —rfsup, - tsfup, + rssup, - tffup,

M, (3,1) = —tssup, - rff, +tsfup, - rfs,

M, (3,2) = —tssup, - rsf, + tsfup, - rss,

M, (3,3) = tssup,

M, (3,4) = —tsfup,

M, (4,1) = —rfs, - tffup, + rff, - tfsup,

M, (4,2) = —rss, - tffup, + rsf, - tfsup,

M, (4,3) = —tfsup,

M, (4,4) =tffup,
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Appendix 2: Fortran Code

A2.1 Example input file

1

3 22 0.0001 3

38 265 146 15 03 2 0025 0.15 0.01
38 265 146 156 03 2 242 1 1
38 265 146 15 03 2 0025 0.15 0.01

A2.2 Output file from the input above
Type 0, to see self-document file

nlayer  freq[Hz] dt[sec] multiples
3 100.00 0.000100 3

kg rhog kdry udry phi kappa kf rhof nf

[Gpa] [g/cc] [Gpa] [Gpa] [darcy] [Gpa] [g/cc] [cp]
35.000 2.650 1.700 1.855 0.300 1.000 0.022 0.100 0.015
35.000 2.650 1.700 1.855 0.300 1.000 2.400 1.000 1.000

Reflectivity Slow wave 192
-0.2657334804534913
0.0000000000000000
0.2313374904532081
0.0000000000000000
0.0134042316281641
0.0000000000000000

Transmitivity Slow wave 267
0.9610546140364452
0.0000000000000000
0.0556857370096958
0.0000000000000000
0.0032265609685689
0.0000000000000000
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A2.3 Fortran code (http://www.geosc.uh.edu/~yliu/slowave.for)

slowave - calculates the 1-D impulse reflectivity and
transmitivity series of the Biot’s Fast P wave and Slow
P wave propagations through the fluid-saturated porous
permeable layered media.

Input
nlayer number of total layers
freq frequency in [Hz]
dt sample rate or sample time [sec]
mtps number of multiples (mtps >= 2)
kg grain bulk modulus  [Gpa]
rhog grain density [g/cc]
kdry dry rock bulk modulus [Gpa]
udry dry rock shear modulus [Gpa]
phi porosity
kappa permeability [darcy]
kf fluid bulk modulus  [Gpa]
rhof fluid density [g/cc]
fluid viscosity [cp]
Output
a reflectivity series
b transmitivity series
nsr number of samples in reflectivity series
nst number of samples in transmitivity series

nlayer, freq, dt, mtps
kg, rhog, kdry, udry, phi, kappa, kf, rhof, nf [ Layer 0 ]
kg, rhog, kdry, udry, phi, kappa, kf, rhof, nf [ Layer 1]

OO0O0O0O0O0OO0O0O0O00O00000000000000000000000000000O0
>3
—h

3 22 0.0001 3
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10

program slowave

38 265 146 15 03 2 0025 0.15 0.01
38 265 146 156 03 2 242 1 1
38 265 146 15 03 2 0025 0.15 0.01

Note: Layer 0 and Layer k are two half spaces.
nlayer=k + 1

References: Silin D., and Goloshubin G., 2008, Seismic
wave reflection from a permeable layer:
low-frequency asymptotic analysis: Proceedings
of IMECE, Boston, USA.

Robinson, E. A., 1967, Multichannel time series
analysis with digital computer programs:
Holden-Day, San Francisco.

double precision a(10000), b(10000)
integer flag

write(*,*) 'Type 0, to see self-document file'
read (*,*) flag

if(flag.eq.0) goto 10
if(flag.eq.1) goto 20

write(*,*) "\n This program calculates reflectivity and'
write(*,*) ‘transmitivity series of P wave and Biot Slow'
write(*,*) ‘wave propagate through fluid-saturated porous'
write(*,*) 'permeable layered media.'

write(*,*) '\n An input file is needed.’

write(*,*) \n Input file has format below:'

write(*,*) '1'

write(*,*) 'nlayer, freq, dt, multiples'

write(*,*) 'kg, rhog, kdry, udry, phi, kappa, kf, rhof, nf

+[Layer0]

write(*,*) 'kg, rhog, kdry, udry, phi, kappa, kf, rhof, nf

+[Layer1]

write(*,*)" ... '
write(*,*) 'kg, rhog, kdry, udry, phi, kappa, kf, rhof, nf

+ [ Layer k]’

write(*,*) \n Example of an input file shows below:’
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+

+

+

write(*,*) '1'

write(*,*) '3 22 0.0001 3

write(*,*)'38 2.65 146 156 03 2 0.025
0.15 0.01

write(*,*)'38 2.65 146 156 03 2 242

1 7

write(*,*)'38 2.65 146 156 03 2 0.025
0.15 0.01\n’

write(*,*) 'This self-document also generates an input file:

+ input.dat\n’

write(*,*) 'To get output, type: a <input.dat >output.dat\n’
write(*,*) 'Check the output in the new file: output.dat\n’

open(7,file="input.dat’,status="unknown)
write(7,*) '1'

write(7,*) '3 22 0.0001 3

write(7,*)'38 265 146 156 03 2 0.025

+ 0.15 0.01
write(7,*)'38 2.65 146 156 03 2 242
+ 1 T
write(7,*)'38 2.65 146 156 0.3 2 0.025
+ 0.15 0.01\n'
pause
goto 100
20 read(*,*) nlayer, freq, dt, mtps
write(*,*) \n nlayer  freq[Hz]  dt[sec] multiples’
write(*,30) nlayer, freq, dt, mtps
30 format(i4,5x,f10.2,8x,f8.6,6x,i4)
Ic=nlayer-1 I/* number of subsurface interfaces */
call refsl(mtps,lc,freq,dt,a,b,nsr,nst)
write(*,*) '\n Reflectivity Slow wave ', nsr
call outdat(nsr,a)
write(*,*) '\n Transmitivity Slow wave ', nst
call outdat(nst,b)
100 stop
end
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refsl - calculate reflectivity and transmitivity series taken
into account Biot's slow wave.

mtps number of multiples (mtps >= 2)
Ic number of subsurface interfaces
freq fregeuncy [Hz]

dt sample rate or sample time [sec]

a[]  reflectivity series
b[] transmitivity series
nsr  number of samples in reflectivity series
nst  number of samples in transmitivity series

subroutine refsl(mtps,lc,freq,dt,a,b,nsr,nst)
double precision c(4,4),c2,cc,a(10000),b(10000)
double precision p1(10000),p2(10000),q1(10000),q2(10000),p(10000)
double precision q(10000),ps1(10000),ps2(10000)
double precision pp1(10000),pp2(10000),pps1(10000),pps2(10000)
double precision pp(10000),qg1(10000),q92(10000)
double precision kg(2),rhog(2),kdry(2),udry(2),phi(2),kappa(2)
double precision kf(2),rhof(2),nf(2)
double precision n11(10000),n12(10000),n13(10000),n14(10000)
double precision n21(10000),n22(10000),n23(10000),n24(10000)
double precision n31(10000),n32(10000),n33(10000),n34(10000)
double precision n41(10000),n42(10000),n43(10000),n44(10000)
integer tau  !/* tau = vfast / vslow */

cc=1 I/* record the coefficient outside the matrix */
Ise=0 1/* record the number of zeros in reflectivity */
Isee=0 1/* record the number of zeros in transmitivity */
dt e=0 1/* time thickness for top layer (half space) */

read(*,*) kg(1),rhog(1),kdry(1),udry(1),phi(1),kappa(1),kf(1),
+  rhof(1),nf(1)

read(*,*) kg(2),rhog(2),kdry(2),udry(2),phi(2),kappa(2),kf(2),
+  rhof(2),nf(2)

write(*,*) \n kg  rhog kdry wudry phi kappa kf
+ rhof nf

write(*,*) ' [Gpa] [g/cc] [Gpa] [Gpa] [darcy] [Gpa]
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+ [g/cc] [epl

+

+

write(*,10) kg(1),rhog(1),kdry(1),udry(1),phi(1),kappa(1),kf(1),
rhof(1),nf(1)

write(*,10) kg(2),rhog(2),kdry(2),udry(2),phi(2),kappa(2),kf(2),
rhof(2),nf(2)

format(9f8.3)

call onelayer(kg,rhog,kdry,udry,phi,kappa,kf,rhof,nf,freq,dt_e,c,c2,
tau)

cc=cc*c2

In=1 1/* In is the length of polynomials in matrix N_k */
I/*N 0=M_0,s0In=1forN_O;N_1=M_1*N_0*/

n11(1)=c(1,1) N\

n12(1)=c(1,2) ||

n13(1)=c(1,3) !|

nl4(1)=c(1,4) |

n21(1)=c(2,1) |

n22(1)=c(2,2) |

n23(1)=c(2,3) ||

n24(1)=c(2,4) ! > /* form matrix N_0, which equals to M_0 */
n31(1)=c(3,1) ||

n32(1)=c(3,2) ||

n33(1)=c(3,3) ||

n34(1)=c(3,4) ||

n41(1)=c(4,1) ||

n42(1)=c(4,2) ||

n43(1)=c(4,3) ||

n44(1)=c(4,4) Y/

do k=2, Ic I/* recursively calculate matrix N_k;
I' N_k=M_k* N_(k-1) */

kg(1)=kg(2)
rhog(1)=rhog(2)
kdry(1)=kdry(2)
udry(1)=udry(2)
phi(1)=phi(2)
kappa(1)=kappa(2)
kf(1)=kf(2)
rhof(1)=rhof(2)
nf(1)=nf(2)

read(*,*) kg(2),rhog(2),kdry(2),udry(2),phi(2),kappa(2),kf(2),
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rhof(2),nf(2)
write(*,10) kg(2),rhog(2),kdry(2),udry(2),phi(2),kappa(2),kf(2),
rhof(2),nf(2)

call onelayer(kg,rhog,kdry,udry,phi,kappa,kf,rhof,nf,freq,dt,c,
c2,tau)

cc=cc*c2
Ise=Ise+tau-1 I/* the zero coefficients in reflectivity

I polynomials increase with tau-1 */
Isee=Isee+2*tau I/* the zero coefficients in transmitivity

I polynomials increase with 2*tau */
Im=mtps*tau+1 I/* record the length of polynomials in

I propagator matrix M_k */

call mprod(c,tau,Im,In,n11,n12,n13,n14,n21,n22,n23,n24,n31,n32,
n33,n34,n41,n42,n43,n44)

end do

call fold(In,n44,In,n31,Ip,p1)
call fold(In,n41,In,n34,Ip,p2)
call fold(In,n33,In,n41,Ip,ps1)
call fold(In,n31,In,n43,Ip,ps2)

call fold(In,n13,lp,p1,lpp,ppl)
call fold(In,n13,1p,p2,lpp,pp2)
call fold(In,n14,1p,ps1,Ipp,ppsl)
call fold(In,n14,1p,ps2,Ipp,pps2)

call fold(In,n43,In,n34,lq,q1)
call fold(In,n44,In,n33,lq,q2)
call fold(In,n11,1q,91,l99,991)
call fold(In,n11,19,92,199,q92)

do i=1,lpp
pP(i)=qa1(i)-a92(i)+pp1(i)-pp2(i) +ppsi(i)-pps2(i)
end do
call pcut(lpp,pp.lsee) 1/* cut the zero coefficients
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I in polynomial pp[] */

doi=1,lq
q(i)=q1(i)-q2(i)
end do
call pcut(lg,q,Ise) 1/* cut the zero coefficients
I in polynomial g[] */
doi=1,lp
p(1)=p1(i)-p2(i)
end do
call pcut(lp,p,lse) I/* cut the zero coefficients
I in polynomial p[] */
C [* reflectivity series, receiver in the top layer (half space) */

call polydv(lq,q,Ip,p,Ip,a)
nsr=Ip

C [* transmitivity series, receiver in the bottom layer (half space) */

call polydv(la,q,Ipp,pp.lpp,b)

doi=1,lpp
b(i)=b(i)/cc
end do

nst=Ipp

return
end

C
C
Cmm e e
C Input: matrix N_(k-1)

C c[] array of coefficients in propagator matrix M

C tau  slow wave time delay factor, tau = vfast / vslow

C Im  length of polynomials in propagator matrix M_k

C In length of polynomials in matrix N_(k-1)

C nl1l-n44 polynomials in matrix N_(k-1)
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Output: matrix N_k
In length of polynomials in matrix N_k
nll - n44 polynomials of the matrix elements in matrix N_k
Note: multiplication of polynomials is essentially a
convolution of their coefficients
subroutine mprod(c,tau,Im,In,n11,n12,n13,n14,n21,n22,n23,
+ n24,n31,n32,n33,n34,n41,n42,n43,n44)

integer tau

double precision c(4,4)

double precision n11(10000),n12(10000),n13(10000),n14(10000)
double precision n21(10000),n22(10000),n23(10000),n24(10000)
double precision n31(10000),n32(10000),n33(10000),n34(10000)
double precision n41(10000),n42(10000),n43(10000),n44(10000)
double precision m11(10000),m12(10000),m13(10000),m14(10000)
double precision m21(10000),m22(10000),m23(10000),m24(10000)
double precision m31(10000),m32(10000),m33(10000),m34(10000)
double precision m41(10000),m42(10000),m43(10000),m44(10000)
double precision n11a(10000),n12a(10000),n13a(10000),n14a(10000)
double precision n21a(10000),n22a(10000),n23a(10000),n24a(10000)
double precision n31a(10000),n32a(10000),n33a(10000),n34a(10000)
double precision n41a(10000),n42a(10000),n43a(10000),n44a(10000)
double precision n11b(10000),n12b(10000),n13b(10000),n14b(10000)
double precision n21b(10000),n22b(10000),n23b(10000),n24b(10000)
double precision n31b(10000),n32b(10000),n33b(10000),n34b(10000)
double precision n41b(10000),n42b(10000),n43b(10000),n44b(10000)
double precision n11¢(10000),n12¢(10000),n13c(10000),n14¢(10000)
double precision n21¢(10000),n22¢(10000),n23¢(10000),n24¢(10000)
double precision n31¢(10000),n32¢(10000),n33c(10000),n34¢(10000)
double precision n41¢(10000),n42¢(10000),n43c(10000),n44¢(10000)
double precision n11d(10000),n12d(10000),n13d(10000),n14d(10000)
double precision n21d(10000),n22d(10000),n23d(10000),n24d(10000)
double precision n31d(10000),n32d(10000),n33d(10000),n34d(10000)
double precision n41d(10000),n42d(10000),n43d(10000),n44d(10000)

call zero(Im,m11) N\
mll(tau+2)=c(1,1) ||
call zero(Im,m12) I
m12(2*tau+1)=c(1,2) ||
call zero(Im,m13) I
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m13(tau)=c(1,3) I
call zero(Im,m14) I
m14(1)=c(1,4) 1
call zero(Im,m21) I
m21(tau+2)=c(2,1) ||
call zero(Im,m22) I
m22(2*tau+1)=c(2,2) ||
call zero(Im,m23) I
m23(tau)=c(2,3) I
call zero(Im,m24) I
m24(1)=c(2,4) I > /* form propagator matrix M_k */
call zero(Im,m31) I
m31(tau+2)=c(3,1) ||
call zero(Im,m32) I
m32(2*tau+1)=c(3,2) ||
call zero(Im,m33) I
m33(tau)=c(3,3) I
call zero(Im,m34) I
m34(1)=c(3,4) I
call zero(Im,m41) I
m4l(tau+2)=c(4,1) ||
call zero(Im,m42) I
m42(2*tau+1)=c(4,2) ||
call zero(Im,m43) I
m43(tau)=c(4,3) I
call zero(Im,m44) I
m44(1)=c(4,4) 1/

call fold(Im,m11,In,n11,j,n11a)
call fold(Im,m12,In,n21,j,n11b)
call fold(Im,m13,In,n31,j,n11c)
call fold(Im,m14,In,n41,j,n11d)
call fold(Im,m11,In,n12,j,n12a)
call fold(Im,m12,In,n22,j,n12b)
call fold(Im,m13,In,n32,j,n12c)
call fold(Im,m14,In,n42,j,n12d)
call fold(Im,m11,In,n13,j,n13a)
call fold(Im,m12,In,n23,j,n13b)
call fold(Im,m13,In,n33,j,n13c)
call fold(Im,m14,In,n43,j,n13d)
call fold(Im,m11,In,n14,j,n14a)
call fold(Im,m12,In,n24,j,n14b)
call fold(Im,m13,In,n34,j,n14c)
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call fold(Im,m14,In,n44,j,n14d)

call fold(Im,m21,In,n11,j,n21a)
call fold(Im,m22,In,n21,j,n21b)
call fold(Im,m23,In,n31,j,n21c)
call fold(Im,m24,In,n41,j,n21d)
call fold(Im,m21,In,n12,j,n22a)
call fold(Im,m22,In,n22,j,n22b)
call fold(Im,m23,In,n32,j,n22c)
call fold(Im,m24,In,n42,j,n22d)
call fold(Im,m21,In,n13,j,n23a)
call fold(Im,m22,In,n23,j,n23b)
call fold(Im,m23,In,n33,j,n23c)
call fold(Im,m24,In,n43,j,n23d)
call fold(Im,m21,In,n14,j,n24a)
call fold(Im,m22,In,n24,j,n24b)
call fold(Im,m23,In,n34,j,n24c)
call fold(Im,m24,In,n44,j,n24d)

call fold(Im,m31,In,n11,j,n31a)
call fold(Im,m32,In,n21,j,n31b)
call fold(Im,m33,In,n31,j,n31c)
call fold(Im,m34,In,n41,j,n31d)
call fold(Im,m31,In,n12,j,n32a)
call fold(Im,m32,In,n22,j,n32b)
call fold(Im,m33,In,n32,j,n32c)
call fold(Im,m34,In,n42,j,n32d)
call fold(Im,m31,In,n13,j,n33a)
call fold(Im,m32,In,n23,j,n33b)
call fold(Im,m33,In,n33,j,n33c)
call fold(Im,m34,In,n43,j,n33d)
call fold(Im,m31,In,n14,j,n344a)
call fold(Im,m32,In,n24,j,n34b)
call fold(Im,m33,In,n34,j,n34c)
call fold(Im,m34,In,n44,j,n34d)

call fold(Im,m41,In,n11,j,n41a)
call fold(Im,m42,In,n21,j,n41b)
call fold(Im,m43,In,n31,j,n41c)
call fold(Im,m44,In,n41,j,n41d)
call fold(Im,m41,In,n12,j,n42a)
call fold(Im,m42,In,n22,j,n42b)
call fold(Im,m43,In,n32,j,n42c)
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call fold(Im,m44,In,n42,j,n42d)
call fold(Im,m41,In,n13,j,n43a)
call fold(Im,m42,In,n23,j,n43b)
call fold(Im,m43,In,n33,j,n43c)
call fold(Im,m44,In,n43,j,n43d)
call fold(Im,m41,In,n14,j,n44a)
call fold(Im,m42,In,n24,j,n44b)
call fold(Im,m43,In,n34,j,n44c)
call fold(Im,m44,In,n44,j,n44d)

do k=1,j
n11l(k)=nlla(k)+nllb(k)+nllc(k)+nl1ld(k)

end do

do k=1,j
n12(k)=nl12a(k)+n12b(k)+n12c(k)+nl12d(k)

end do

do k=1,j
n13(k)=n13a(k)+n13b(k)+n13c(k)+n13d(k)

end do

do k=1,j
nl4(k)=nl4a(k)+n1l4b(k)+nldc(k)+nl14d(k)

end do

do k=1,j
n21(k)=n2la(k)+n21b(k)+n21lc(k)+n21d(k)

end do

do k=1,j
n22(k)=n22a(k)+n22b(k)+n22c(k)+n22d(k)

end do

do k=1,j
n23(k)=n23a(k)+n23b(k)+n23c(k)+n23d(k)

end do

do k=1,j
n24(k)=n24a(k)+n24b(k)+n24c(k)+n24d(k)

end do

do k=1,j
n31(k)=n31la(k)+n31b(k)+n31c(k)+n31d(k)

end do

do k=1,j
n32(k)=n32a(k)+n32b(k)+n32c(k)+n32d(k)

end do

do k=1,j
n33(k)=n33a(k)+n33b(k)+n33c(k)+n33d(k)

end do
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do k=1,j
n34(k)=n34a(k)+n34b(k)+n34c(k)+n34d(k)

end do

do k=1,j
n41(k)=n4la(k)+n41b(k)+n41lc(k)+n41d(k)

end do

do k=1,j
n42(k)=n42a(k)+n42b(k)+n42c(k)+n42d(k)

end do

do k=1,j
n43(k)=n43a(k)+n43b(k)+n43c(k)+n43d(k)

end do

do k=1,
n44(k)=nd4a(k)+nd4b(k)+nd4c(k)+nd4d(k)

end do

In=j  1/* update the length of polynomials in matrix N_k */

return
end

subroutine outdat(lx,x)
double precision x(Ix)
write(*,5) (x(i),i=1,1x)
format(f30.16)

return

end

subroutine pcut(Ip,p,k)
double precision p(Ip)
Ip=lp-k
doi=1,lp
p(i)=p(i+k)
end do
return
end
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OO0O0O0000O000O00O0O00O0

OO0OO0000O000O0O00O0

n length of dvs[]
dvs[] array of polynomial coefficients
m length of dvd[]
dvd[] array of polynomial coefficients

Output:
I length of q[]
g[]  array of polynomial coefficients: g[] = dvd[] / dvs[]

subroutine polydv(n,dvs,m,dvd,l,q)
double precision dvs(n),dvd(m),q(l)
call zero (1,0)
call move(min(m,l),dvd,q)
doi=1,
q(i)=q(i)/dvs(1)
if(i.eq.l) return
k=i
isub=min(n-1,1-i)
do j=1,isub
k=k+1
q(k)=a(k)-a(i)*dvs(j+1)
end do
end do
return
end

Input:

la length of a[]

a[]  array of polynomial coefficients
Ib length of b[]

b[] array of polynomial coefficients

Output:
Ic length of c[]
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C c[] array of polynomial coefficients:

subroutine fold(la,a,lb,b,lc,c)
double precision a(la),b(lb),c(Ic)
Ic=la+lb-1
call zero(lc,c)
doi=1,la
doj=1,Ib
k=i+j-1
c(k)=c(k)+a(i)*b()
end do
end do
return
end

Input:
Ix length of x[] and y[]
x[]  array of polynomial coefficients

Output:

y[]  array of polynomial coefficients
subroutine move(Ix,x,y)

double precision x(Ix),y(Ix)

do i=1,Ix

y(i)=x(i)

end do
return
end

Input:
Ix length of x[]
X[]  array of polynomial coefficients

OO0OO00O0O0O0O0

Output:
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C x[]  array of all zero values

subroutine zero(Ix,x)
double precision x(Ix)
if (Ix.1e.0) return
do i=1,Ix
x(i)=0.0
end do
return
end

onelayer - calculates reflections using asymptotic formulas
of Biot for one layer of medium (reference:
Silin & Goloshubin, 2008).

Input:

kg  grain bulk modulus

rhog grain density

kdry dry rock bulk modulus

udry dry rock shear modulus

phi  porosity

kappa permeability

kf fluid bulk modulus

rhof  fluid density

nf fluid viscosity

freq frequency

dt sample rate or P wave time thickness of medium [1]

Output:

cl[] array of coefficients in propagator matrix M

c2  coefficients outside the propagator matrix M
tau  slow wave time delay factor, tau = vfast / vslow

from [2] to [1] as up going.
subroutine onelayer(kg,rhog,kdry,udry,phi,kappa,kf,rhof,nf,
+ freq,dt,cl,c2,tau)
double precision kg(2),rhog(2),kdry(2),udry(2),phi(2),kappa(2)
double precision kf(2),rhof(2),nf(2)
double precision ksg_1,ksg_2,ksg_1up,ksg_2up,kfg_1,kfg_2
double precision kfg_1up,kfg_2up

SN NN NONO NGO NONO N NONO RO NONONO RO NONONONONONONONONS®
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double precision ks_1,ks _2,ks_lup,ks_2up,m_1,m_2,m_1up,m_2up
double precision c1(4,4),c2
integer tau

C Input parameters

pi=3.141592654
w=2*pi*freq

C Calculation for down going wave

m_1=kdry(1)+udry(1)*4/3

m_2=kdry(2)+udry(2)*4/3

bf_1=1/kf(1)

bf 2=1/kf(2)

rhobulk_1=phi(1)*rhof(1)+(1-phi(1))*rhog(1)

rhobulk_2=phi(2)*rhof(2)+(1-phi(2))*rhog(2)

gk=rhof(2)*nf(1)*kappa(2)/(rhof(1)*nf(2)*kappa(1))

gro_1=rhobulk_1/rhof(1)

gro_2=rhobulk_2/rhof(2)

e=0.000000986923*rhof(2)*kappa(2)*w/nf(2)

vb_1=1000*sqrt(m_21/rhobulk_1)

vb_2=1000*sqrt(m_2/rhobulk_2)

vf_1=1000*sqrt(m_1/rhof(1))

vf_2=1000*sqrt(m_2/rhof(2))

ksg_1=kg(1)/(1-phi(1))

ksg_2=kg(2)/(1-phi(2))

kfg_1=kg(1)/(1-kdry(1)/kg(1))

kfg_2=kg(2)/(1-kdry(2)/kg(2))

gh_1=m_1*(bf_1*phi(1)+(1-phi(1))/kfg_1)

gb_2=m_2*(bf_2*phi(2)+(1-phi(2))/kfg_2)

gm_1=1-(1-phi(1))*kdry(1)/ksg_1

gm_2=1-(1-phi(2))*kdry(2)/ksg_2

z_1=10**6*m_1*sqrt((gb_1+gm_1**2)/gb_1)/vb_1

z 2=10**6*m_2*sqrt((gb_2+gm_2**2)/gb_2)/vb_2

a=(gm_1/(gm_1**2+gb_1)-gm_2/(gm_2**2+gb_2))*2*z_1*z_2/(z_1+z_2)

d=0.000001*z_1*z 2*sqrt(gh_1*gb_2)*(vb_1*sqrt(gm_1**2+gb 1)/
$  (sgrt(gk)*gro_2*m_1)+vb_2*sqrt(gm_2**2+gb_2)/(gro_1*m_2))/
$ (gm_1*gm_2)

C Calculation for up going wave
m_1lup=kdry(2)+udry(2)*4/3
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C

C

m_2up=kdry(1)+udry(1)*4/3
bf_lup=1/kf(2)
bf 2up=1/kf(1)
rhobulk_1up=phi(2)*rhof(2)+(1-phi(2))*rhog(2)
rhobulk_2up=phi(1)*rhof(1)+(1-phi(1))*rhog(1)
gkup=rhof(1)*nf(2)*kappa(1)/(rhof(2)*nf(1)*kappa(2))
gro_lup=rhobulk_lup/rhof(2)
gro_2up=rhobulk_2up/rhof(1)
eup=0.000000986923*rhof(1)*kappa(1)*w/nf(1)
vb_1up=1000*sqrt(m_2lup/rhobulk_1up)
vb_2up=1000*sqrt(m_2up/rhobulk_2up)
vf_1up=1000*sqrt(m_2lup/rhof(2))
vf_2up=1000*sqrt(m_2up/rhof(1))
ksg_1up=kg(2)/(1-phi(2))
ksg_2up=kg(1)/(1-phi(1))
kfg_lup=kg(2)/(1-kdry(2)/kg(2))
kfg_2up=kg(1)/(1-kdry(1)/kg(1))
gb_lup=m_2lup*(bf_lup*phi(2)+(1-phi(2))/kfg_lup)
gb_2up=m_2up*(bf_2up*phi(1)+(1-phi(1))/kfg_2up)
gm_1up=1-(1-phi(2))*kdry(2)/ksg_Llup
gm_2up=1-(1-phi(1))*kdry(1)/ksg_2up
z_1up=10**6*m_2lup*sqrt((gb_lup+gm_lup**2)/gb_lup)/vb_lup
z_2up=10**6*m_2up*sqrt((gb_2up+gm_2up**2)/gb_2up)/vb_2up
aup=(gm_Zlup/(gm_1lup**2+gb_lup)-gm_2up/(gm_2up**2+gb_2up))*
$ 2*z_lup*z_2up/(z_lup+z_2up)
dup=0.000001*z_1up*z_2up*sqrt(gb_lup*gb_2up)*
$ (vb_lup*sgrt(gm_lup**2+gb_1up)/(sqrt(gkup)*gro_2up*m_1lup)+
$ vb_2up*sqrt(gm_2up**2+gb_2up)/(gro_lup*m_2up))/(gm_lup*gm_2up)

Reflection coefficients and transmission coefficients
For fast incident and down going wave

r_1fs=(gm_2**2+gb_2)*a/(gm_2*d)

t 1fs=(gm_1**2+gb_1)*a/(gm_1*d)
r_1ff=z_2*(t_1fs-r_1fs)/(z_1+z_2)

t 1ff=z 1*(r_1fs-t_1fs)/(z_1+z_2)
rff=(z_1-z_2)/(z_1+z_2)+sqrt(e)*r_1ff/2**0.5
rffi=sqrt(e)*r_1ff/2**0.5
tff=1+(z_1-z_2)/(z_1+z_2)+sqrt(e)*t_1ff/2**0.5
tffi=sqrt(e)*t_1ff/2**0.5
rfs=r_1fs*sqrt(e)/2**0.5
rfsi=r_1fs*sqrt(e)/2**0.5
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tfs=t_1fs*sqrt(e)/2**0.5
tfsi=t_1fs*sqrt(e)/2**0.5

C For fast incident and up going wave

r_1fsup=(gm_2up**2+gb_2up)*aup/(gm_2up*dup)

t 1fsup=(gm_lup**2+gb_lup)*aup/(gm_Llup*dup)
r_1ffup=z_2up*(t_1fsup-r_1fsup)/(z_lup+z_2up)

t 1ffup=z_lup*(r_1fsup-t_1fsup)/(z_lup+z_2up)
rffup=(z_21up-z_2up)/(z_lup+z_2up)+sqrt(eup)*r_1ffup/2**0.5
rffiup=sqrt(eup)*r_1ffup/2**0.5
tffup=1+(z_1up-z_2up)/(z_1lup+z_2up)+sqrt(eup)*t_1ffup/2**0.5
tffiup=sqrt(eup)*t_1ffup/2**0.5
rfsup=r_1fsup*sqrt(eup)/2**0.5
rfsiup=r_1fsup*sqrt(eup)/2**0.5
tfsup=t_1fsup*sqrt(eup)/2**0.5
tfsiup=t_1fsup*sqrt(eup)/2**0.5

C For slow incident and down going wave

cs_1=gm_1+gb_1/gm_1

cs_2=gm_2+gb_2/gm_2

xs_1=-1/gm_1

Xs_2=-1/gm_2

ks_1=(1/vf_1)*sqgrt(gb_1+gm_1**2)

ks _2=(1/vf_2)*sqgrt(gb_2+gm_2**2)

rss=(-cs_1*m_2*ks 2*xs 2/sqrt(gk)+cs _2*m_1*ks 1*xs 1)/
$ (cs_1*m_2*ks_2*xs_2/sqrt(gk)+cs_2*m_1*ks_1*xs 1)

tss=(cs_2*m_2*ks_2*xs_2/sqrt(gk)+cs_1*m_1*ks 1*xs 1)/
$ (cs_1*m_2*ks_2*xs_2/sqrt(gk)+cs_2*m_1*ks_1*xs 1)

rsf=z_2*(-1-rss+tss)/(z_1+z_2)

tsf=-z_1*(-1-rss+tss)/(z_1+z_2)

C For slow incident and up going wave

cs_lup=gm_1up+gb_lup/gm_lup
CS_2up=gm_2up+gb_2up/gm_2up
xs_lup=-1/gm_1up
XS_2up=-1/gm_2up
ks_lup=(1/vf_lup)*sqrt(gb_lup+gm_lup**2)
ks _2up=(1/vf_2up)*sqrt(gb_2up+gm_2up**2)
rssup=(-cs_lup*m_2up*ks_2up*xs_2up/sqrt(gkup)+

$ cs_2up*m_lup*ks_lup*xs_lup)/(cs_lup*m_2up*ks_2up*
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$ xs_2up/sgrt(gkup)+cs_2up*m_lup*ks_lup*xs_1up)
tssup=(cs_2up*m_2up*ks_2up*xs_2up/sqrt(gkup)+cs_lup*

$ m_lup*ks_lup*xs_lup)/(cs_lup*m_2up*ks_2up*xs_2up/

$ sgrt(gkup)+cs_2up*m_lup*ks_lup*xs_lup)
rsfup=z_2up*(-1-rssup+tssup)/(z_lup+z_2up)
tsfup=-z_1up*(-1-rssup+tssup)/(z_lup+z_2up)

Velocity and attenuation coefficient

vfast_1=vb_1*sqrt(1+gm_1**2/gb 1)
vfast_2=vb_2*sqrt(1+gm_2**2/gb_2)

vslow_1=vf 1*sqrt(2*eup/(gh_l+gm_1**2))
vslow_2=vf_2*sqrt(2*e/(gh_2+gm_2**2))
zeta_0_1=(gm_1**2+gb_1)/(gb_1*gro_1)
zeta_0_2=(gm_2**2+gb_2)/(gb_2*gro_2)

zeta_1 1=(((gm_1**2+gb_1)/gro_1)-gm_1)**2/(gh_1*(gm_1**2+gb 1))
zeta_1 2=(((gm_2**2+gb_2)/gro_2)-gm_2)**2/(gh_2*(gm_2**2+gb_2))
afast_1=w*sqrt(gb_1/(gh_1+gm_1**2))*zeta 1 1*eup/(vb_1*2*zeta 0 1)
afast_2=w*sqrt(gh_2/(gh_2+gm_2**2))*zeta_1 2*e/(vb_2*2*zeta 0 2)
aslow_1=w*sqrt((gh_1+gm_1**2)/(2*eup))/vf_1
aslow_2=w*sqrt((gh_2+gm_2**2)/(2*e))/vf 2

For purely elastic media

rff_elastic=(z_1-z_2)/(z_1+z_2)
tff_elastic=1+(z_1-z_2)/(z_1+z_2)
rffup_elastic=(z_1up-z_2up)/(z_lup+z_2up)
tffup_elastic=1+(z_1lup-z_2up)/(z_lup+z_2up)

Calculate the Matrix elements of M_0

att_f=exp(-afast_1*vfast_1*dt)
att_s=exp(-aslow_1*vfast_1*dt)

cl1(1,1)=(tff*(tffup*tssup-tsfup*tfsup)+rffup*

$  (-tssup*rff+tsfup*rfs)+rsfup*(-rfs*tffup+rff*tfsup))*att_f
c1(1,2)=(tsf*(tffup*tssup-tsfup*tfsup)+rffup™

$ (-tssup*rsf+tsfup*rss)+rsfup*(-rss*tffup+rsf*tfsup))*att_s
c1(1,3)=(rffup*tssup-rsfup*tfsup)/att_f
c1(1,4)=(-rffup*tsfup+rsfup*tffup)/att_s
c1(2,1)=(tfs*(tffup*tssup-tsfup*tfsup)+rfsup*

$ (-tssup*rff+tsfup*rfs)+rssup*(-rfs*tffup+rff*tfsup))*att_f
c1(2,2)=(tss*(tffup*tssup-tsfup*tfsup)+rfsup*
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$  (-tssup*rsf+tsfup*rss)+rssup*(-rss*tffup+rsf*tfsup))*att_s
c1(2,3)=(rfsup*tssup-rssup*tfsup)/att_f
c1(2,4)=(-rfsup*tsfup+rssup*tffup)/att_s
c1(3,1)=(-tssup*rff+tsfup*rfs)*att_f
c1(3,2)=(-tssup*rsf+tsfup*rss)*att_s
c1(3,3)=tssup/att_f
c1(3,4)=-tsfup/att_s
cl1(4,1)=(-rfs*tffup+rff*tfsup)*att_f
c1(4,2)=(-rss*tffup+rsf*tfsup)*att_s
cl1(4,3)=-tfsup/att_f
cl(4,4)=tffup/att_s
c2=tffup*tssup-tsfup*tfsup

tau=vfast_1/vslow 1

return
end
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