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ABSTRACT 

Each hydrocarbon reservoir has its own characteristic seismic frequency response to 

seismic signals due to its unique rock and fluid properties in the surrounding 

environment. Much evidence shows the presence of low frequency spectral anomalies 

with a high degree of correlation to the location of hydrocarbon reservoirs. To understand 

the physical reasons causing this phenomenon, and to utilize it as an attribute of 

hydrocarbon indicator, I categorize the influence factors of seismic frequency into two 

types: global and local factors.  The global factors change the frequency of the entire 

seismic section and determine the background frequency of the seismic section; the local 

factors only bring some regional or local frequency variation at the given time and 

location. Wave equations based on synthetic models can be used to generate local 

frequency energy anomalies related to local fluid properties, lithology change, and layer 

thickness variation. 

Spectral decomposition analyses a signal in both the time and frequency domain. The 

choice of an analyzing wavelet function is fundamental to any spectral decomposition 

method and determines the resolution in the two domains.  An orthonormal wavelet 

optimized to a desired signal in the least square sense is utilized by a hybrid spectral 

decomposition method which combines the continuous wavelet transform with a non-

linear operator. This results in significantly improved frequency resolution and enhances 

local frequency components.  The tool can be used to directly compute seismic frequency 

attributes from seismic data and identify regions of anomalous frequency caused by gas 

or fluid as seismic wave propagates through them. This is illustrated for hydrocarbon-

bearing sands corresponding to frequency anomalies using deep water Gulf of Mexico 

field seismic data. 
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CCHHAAPPTTEERR  11  

IInnttrroodduuccttiioonn  

1.1 Motivation 

 In the geologic interpretation of seismic data, emphasis has traditionally been placed on 

the amplitude of the reflected wavelet, whereas its frequency behavior has not been 

widely used. This is probably due to the fact that variations in amplitude can be related to 

variations in physical properties such as the velocity and density through the definition of 

the reflection coefficient in a straightforward manner. Relationships between the peak 

frequency of a reflected wavelet and the properties of geological formations are complex 

and related to a variety of factors. Partyka (1999) introduced the concept of frequency 

decomposition in reservoir characterization. During recent years, seismic frequency 

characteristics for recognition of hydrocarbon reservoirs have become a major interest 

due to the rapid development of spectral decomposition techniques. Low-frequency 

amplitude anomalies associated with reservoirs have been observed for many years. 

Taner et al. (1979) noted the occurrence of lower apparent frequencies for reflectors on 

seismic sections beneath gas and condensate reservoirs. John Castagna et al. (2003) 

showed that frequency decomposition can illuminate low-frequency shadows beneath gas 

reservoirs.  A growing number of surveys over different oil and gas fields throughout the 

world have established the presence of spectral anomalies with a high degree of 

correlation to the location of hydrocarbon reservoirs ( Holzner et al., 2005; Akrawi and 

Bloch, 2006; Graf et al., 2007; Lambert et al., 2008; van Mastrigt and Al-Dulaijan, 2008). 

The phenomenon of low frequencies associated with hydrocarbon reservoir is not well 

understood.  Many researchers have applied the attenuation concept to justify low 
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frequency phenomena because attenuation acts like a low pass filter, i.e. it suppresses 

higher frequencies proportionally more than the lower frequencies. Some targets that are 

oil or gas reservoirs usually have a lower Q value than the background and exhibit a zone 

of anomalous absorption lying in a larger background region (Winkler and Nur 1982; 

Klimentos, 1995; Parra and Hackert, 2002; Kumar et al., 2003). Yet, it is often difficult to 

explain observed shadows under thin reservoirs, where there is insufficient travel path 

through the absorbing gas reservoir to justify the observed shift of spectral energy from 

high to low frequencies (Castagna, 2003).   If the low frequency anomalies were caused 

by pure attenuation factors, an application of reverse Q filter could recover the high-

frequency components within that zone, but, the low-frequency shadow zone still exists 

even after Q compensation (Yanghua Wang, 2007).  Recently, Korneev et al. (2004) tried 

to explain these low-frequency phenomena using a “frictional-viscous” model 

(Goloshubin and Bakulin, 1998; Goloshubin and Korneev, 2000; Goloshubin et al., 

2006). Saenger (2009) considered poroelastic effects caused by wave-induced fluid flow 

and oscillations of different fluid phases as significant processes in the low-frequency 

range that can modify the omnipresent seismic background spectrum.   

Although Ebrom (2004) gave some possible explanations of low-frequency anomalies, 

the physical mechanism for the low-frequency anomaly zone is still not well established. 

The detection of anomalous zones is clearly the first step in analyzing this possible direct 

hydrocarbon indicator.  It would still be useful to determine the mechanism of the effect, 

so that the effect could be quantitatively related to the reservoir properties. 

The purposes of this dissertation are to analyze and understand the mechanisms that 

influence the local frequency components of seismic data in a thin layer (a quarter 
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wavelength thickness) without attempting to address specific mechanisms of attenuation 

for fractured and porous media. I built a set of synthetic forward models based on wave-

equation to help understand and evaluate the contributions of various factors related to 

local fluid properties, lithology changes, and layer thickness variation to local frequency 

anomalies. A new spectral decomposition method was developed to extract hydrocarbon 

related frequency anomaly and illustrated on synthetic and real data. 

 

1.2  Assumptions 

An important assumption of this work is a constant quality factor Q in the operational 

frequency band. For the synthetic seismic model we apply the wave equation operator to 

the plane wave describing the seismic propagation; the Ricker wavelet is used as a source 

wavelet in our forward modeling technique. I ignore multiple and scattering phenomena 

to study the peak frequency characteristic of seismic reflections from a wedge model with 

arbitrary upper and lower normal incidence reflection in Chapter 5 and 6.  Analysis and 

discussion have not been limited to layers of sufficient thickness for the top and bottom 

reflected wavelets to be resolved, but also to the thickness less than the tuning thickness. 

When the two reflections are not resolvable in the time domain, the thickness information 

is encoded in the amplitude and shape of the reflected wavelet. Attention is focused on 

the change in frequency content of the reflected seismic waveforms due to the dispersive 

behavior of thin layer reflectivity, which varies according to the frequency content of the 

incident impulse. To make the assumptions clear, they are also reiterated throughout the 

dissertation as appropriate. 
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1.3 Thesis layout 

 In addition to the introduction and conclusions, the thesis consists of five chapters on 

various aspects of spectral decomposition and application of frequency characterization:  

Spectral decomposition analyzes the signal in the time-frequency domain. The choice of 

a wavelet function is very important in any spectral decomposition method to keep a 

good resolution in both domains.  In Chapter 2, I describe a method to design an 

orthonormal wavelet, which is optimized to the desired signal in the least square sense. 

For signal detection applications, the decomposition of a signal in the presence of noise 

using a wavelet matched to the signal would produce a sharper or higher resolution in 

time-frequency space as compared to standard non-matched wavelets. A continuous 

wavelet transform (CWT) is a time-frequency analysis method. Unlike Fourier transform, 

the continuous wavelet transform possesses the ability to construct a time-frequency 

representation of a signal that offers very good time and frequency localization. In 

Chapter 3, I develop a hybrid spectral decomposition method, which combines the 

continuous wavelet transform with a non-linear operator. This spectral decomposition 

method can significantly improve frequency resolution and enhance local frequency 

components. Compared to other spectral decomposition methods such as matching 

pursuit, the algorithm runs very fast, because it takes an advantage of fast Fourier 

transform for CWT and a logical operator in extracting local maxima.  Chapter 4 

describes attenuation estimation with continuous wavelet transforms. I had found that 

spectral ratios obtained using continuous wavelet transforms as compared to Fourier 

ratios are more accurate, less subject to windowing problems, and more robust in the 

presence of noise, which results in  a  more robust and effective means of estimating Q. 
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In order to understand the physical mechanisms for low-frequency anomalies associated 

with reservoirs, I analyze the mechanisms that influence local frequency components of 

seismic data in thin layers in Chapter 5. A detailed forward model is built to guide 

understanding of the underlying physical factors and evaluation of the contributions of 

various factors related to local fluid properties, lithology change, and layer thickness 

variation to local frequency anomalies. In Chapter 6, a definition for trend is introduced; 

a corresponding algorithm for finding intrinsically the trend and implementing the 

detrending also is presented. I show how to use the developed method to directly 

compute seismic frequency attributes and to extract local frequency anomalies from field 

data that includes the KingKong reservoir and a nearby fizz gas well (Lisa Anne).  

Conclusions in Chapter 7 summarize the main achievements and novelties of this 

dissertation.  
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  CCHHAAPPTTEERR  22  

Designing an orthonormal wavelet matching a specified signal 

 

2.1 Summary 

In this chapter, an efficient approach to obtain an orthonormal wavelet that is matched to 

seismic signal is developed.  The error between the wavelet and the seismic signal is 

minimized subject to the constraints of the amplitude of the band-limited wavelet 

spectrum. The phase-matching algorithm is developed in time domain to minimize the 

difference of the energy between the desired signal and the optimum wavelets.  Matching 

a wavelet to a signal of interest has potential advantages in extracting signal features with 

greater accuracy, particularly when the signal is contaminated with noise. We have 

applied this technique to a carefully designed synthetic seismic signal.  The results 

indicate that a matched wavelet, that was able to capture the broad seismic signal 

features, performs better image resolution than standard wavelets in decomposing the 

complex spectra when uncorrelated noise is present, and also when modes overlap in time 

and frequency domains. 

 

2.2 Introduction 

In seismic exploration, spectral decomposition is a tool that produces a continuous time-

frequency analysis of a seismic trace. Thus, a frequency spectrum is output for each time 

sample of the seismic trace (Chakraborty and Okaya, 1995; Partyka et al., 1999; Castagna 

et al., 2003). Time-frequency analysis of a given signal may be interpreted as a wavelet 

decomposition of the signal into a set of frequency channels. Unlike Fourier analysis, 
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spectral decomposition using wavelet transforms can be implemented using a non-unique 

process or a non-unique basis; thus, the same seismic trace can result in different time-

frequency character analysis (Castagna and Sun, 2006). In signal feature detection and 

pattern recognition, the decomposition of a signal in the presence of noise using a 

wavelet matched to the signal produces higher resolution in time-frequency space than 

standard wavelets. This resolution improvement is one reason wavelet application have 

become a topic of research in diverse fields. Specifically, finding a wavelet that 

represents the best estimate for a given signal has become a topic of significant research 

interest in the last decade. Mallat and Zhang (1993) pointed out that a single wavelet 

basis function is not flexible enough to represent a complicated non-stationary signal 

such as seismic signal. To address this shortcoming, techniques have been developed to 

find orthonormal wavelet bases with compact support (Daubechies, 1998; Mallat, 1999). 

In these techniques, a dictionary of mother wavelets is pre-computed to be used in the 

matching process. The matching algorithm selects the mother wavelet from the dictionary 

that provides the best match to the signal at the time location of interest (Wang, 2007). 

This selection process gives rise to optimal matching for the lower frequency band of the 

signal.  However, the output of this matching technique is strongly influenced by the 

contents of the dictionary; the dictionary of pre-defined functions might not include 

functions that compactly represent the signal of interest. Also, representing different 

segments by different functions does not optimally reflect the temporal structure of the 

signal. Various techniques to find wavelets that minimize these deficiencies have been 

investigated by different researchers (Chapa and Rao, 2000; Gupta et al., 2005). Chapa 

and Rao (2000) obtained a solution for constructing adaptive band-limited wavelets. They 
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have shown that for orthonormal multi-resolution analysis with band-limited wavelets, 

there is a solution that yields wavelets that ‘‘look’’ like a desired signal. They used a sub-

optimal matching algorithm in the sense that it is performed on the magnitude and phase 

obtained from the Fourier transform of the wavelet independently of one another 

(Vaidyanathanm, 1993; Rao and Bopardikar, 1998).  Recently, Bahrampour et al. (2008) 

simplified Chapa’s method by reducing the optimal matching problem to the solution of a 

set of functional equations for the amplitude and phase of the wavelet spectrum.  

However, Takal et al. (2006) pointed out that the group delay of the matched wavelet, 

obtained by Chapa’s method of matching the phase spectra of the signal and matched 

wavelet, did not closely match in the low-frequency band of the signal primarily due to 

the fact that the signal had to be band limited to satisfy the required orthonormality 

constraints. 

In this chapter, I describe how such a technique could be applied to generate a mother 

wavelet that matches the seismic signal. We developed a method to match the phase of 

desired signal in least squares sense in the time domain, which also automatically 

satisfies the periodicity constrains and the Poisson summation constrains used to match 

the amplitude spectra (Gupta, 2005).   The algorithm to match the phase of the signal was 

implemented by iterative procedures.  Although the method of matching the wavelet to a 

desired signal was derived using the constraint of orthonormal multi-resolution analysis 

(OMRA) based on 2 scaling factor, it also can be generalized to an M-band wavelet 

system.  I applied the method to extract a matched wavelet from a synthetic seismic data 

and utilized the wavelet to decompose the signal to a time-frequency domain through the 

hybrid continuous wavelet transform (which is described in Chapter 3). The results show 
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that the matched wavelets discriminate various features in complex signals better than 

standard wavelets, such as Morlet (Chui, 1992; Kritski et al., 2007) and Ricker wavelets, 

which are commonly used in applied geophysics. 

 

 
2. 3  Multi-resolution decomposition 

Mallat (1999) showed that the discrete wavelet transform can be used to generate an 

orthonormal multi-resolution  decomposition of a discrete signal consisting of a series of 

detail functions and a residual low-resolution approximation of the original signal. Chapa 

and Rao’s algorithm applies multi-resolution analysis (MRA) to develop an orthonormal 

wavelet that matches a signal of interest. The multi-resolution analysis involves a 

decomposition of the function space into a sequence of subspaces jV .  The orthonormal 

MRA decomposes a signal, ( )f x , into a series of detail functions jW  and a residual low 

resolution approximate function, jV .  That is, ( )f x  is projected onto jW and jV , where

1j j jV V W   ,   denotes the union of spaces (like the union of sets).  The orthogonal 

complement of jV  is jW .  The recursive projection of ( )f x  onto jV  and jW  produces the 

detail functions ( )jg x  and ( )jf x
 
such that 

1

( ) ( ) ( )
J

J j
j

f x f x g x


                                                                                                   (2.1) 

The orthonormal bases of jW  and jV  are given by the wavelets ( )jk x and scaling 

function ( )jk x , where   

' '( ), ( ) ( ')( ')jk j kx x j j k k                                                                                   (2.2) 
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For a two-band decomposition, the forward transform consists of  analysis filter pair h0 

(low pass) and h1(high pass) followed by down sampling, while an up sampling ahead of 

the reverse transform filters pair g0 and g1 which called synthesis filters. A pyramid 

algorithm computes the forward transform. Higher level wavelet transform coefficients of 

a signal are determined recursively by decimated convolution of analysis filters with 

lower level wavelet transform coefficients. The inverse transform is performed by using 

the synthesis filters to replace the analysis filters and reversing the sequence of the 

forward transform algorithm (Figure 2.1).  The high-and low-pass filters should have less 

overlap in their spectra (Figure 2.2) so that amplitude distortion may be minimized.  

 

If H0 (ω) has good pass-band and stop-band responses, then the amplitude distortion 

almost keeps constant in the pass bands of H0(ω) and H1(ω). The main difficulty comes in 

the transition band region. The degree of overlap of H0(ω) and H1(ω) is very crucial in 

determining this distortion. Figure 2.2a shows the response of three linear phase designs 

of H0(ω).  If the pass-band edge is too small as in the first curve, the amplitude distortion 

exhibits a dip at approximately π/2.  If the pass-band edge is too large as it shows in the 

 

Figure 2.1  (a) The quadrature mirror filter bank.  (b) Typical frequency magnitude 
response of analysis filters. 
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(a)     (b)  

Figure 2.2  ( a) The frequency responses of  three different H0(ω). ( b) Amplitude 
distortion as function of degree of overlap between analysis filters. 
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second curve (i.e.  H0 and H1 have too much overlap), the amplitude distortion exhibits 

peaks at approximately π/2. The third curve, where the pass-band edge is carefully 

chosen, produces a less distorted response which is a much better response of the 

amplitude. The goal of designing a pass-band filter h0 is to adjust the coefficient of h0 so 

that the filter pairs satisfy the condition   
2 2

0 1( ) ( ) 1H H   . 

In order to perfectly reconstruct the original signal from the detail functions and the 

residual approximation, the following must be true of the Fourier spectral magnitudes of 

h and g.               
2 2

( ) ( ) 1H G  
                                                              

 (2.3) 

Cancellation of aliasing is achieved by setting  1( 1)k
k kg h   .  The filters, h and g are 

related to the mother wavelet, ψ(x), and the scaling function,  x  by their 2-scale 

relations,      2 2  k kx g x k    and    2 2k kx h x k    or in the frequency 

domain by  

 ( ) ( ) ( )  ,  ( ) ( ) ( )
2 2 2 2

G H
                                                                        (2.4)  
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2.4  Construction Φ from Ψ. 

A recursive equation for finding ( ) from ( ) can be found by taking the squared 

magnitude of equations (2.4), adding them, then substituting equation (2.3), giving: 

      

2 2 2 2

2 2 2

2

 (2 ) (2 )  ( ) ( ) ( ) ( )   

                                     =  ( ( ) ( ) ) ( )

                                     =  ( )

H G

H G

     

  



      

 



                                           (2.5) 

Substituting n  , n�  yields  

       
2 2 2

( )  (2 ) (2 )n n n                                                                                 (2.6) 

Since we are seeking to construct an orthonormal multi-resolution analysis,  x must be 

orthonormal, and its Poisson summation must be equal to 1 everywhere. 

 
2

( 2 ) 1
m

m 




                                                                                             (2.7) 

 If ( )  is normalized such that (0) 1  , the Poisson summation is 

 (2 ) 1  for n = 0, or 0   for n 0n   ,
                                                                     (2.8) 

and equation (2.6) can be rewritten as  

      (2 ) 1  for n = 0, or (2n )   for n 0 n      .                                                    (2.9) 

Therefore, at integer multiples of π, Φ can be computed directly from values of Ψ. 

Substituting  / 2n   in (2.5) gives:      

       

2
2 2

( )  ( ) ( )  for n 0
2

n
n n

         .                                                          (2.10) 

At integer multiples of π/2, Φ can be computed from values of Ψ and the previously 

calculated values of Φ.  Repeated substitution leads to the following closed form solution. 

2 2

0

2
( ) ( ( )  for n 0

2 2

l

l p
p

n n 


                                                                                          (2.11) 
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2.5  Guaranteeing  orthonormality 

Lawton (1999) described the necessary and sufficient condition for constructing 

orthonormal wavelet bases. Given that 1( 1)k
k kg h     and (0) 1  , the multi-resolution 

generated by  x and related to ( )x is orthonormal if         

, , ,

, ,

, ,

,

, 0

,

j k j m k m

j k j m

j k l m jl km

  

 

   





 �

                                                                                       (2.12) 

Therefore, an orthonormal multi-resolution analysis is guaranteed when the scaling 

function is orthonormal, thereby satisfying (2.7).  Let / 2  l   , then  

21
2

0

2
( ) ( ( )  for n 0

2

ll

p
p

n
n







       .                                                                          (2.13) 

Setting 2  n n m      and summing over m gives  

 
21

2

0

2  
( 2 ) ( ( 2 )

2

ll

p
m m p

n m n m   
 

  

          .                                          (2.14) 

The left side of (2.14) is the Poisson summation sampled at   and must be equal to 1 

everywhere if   x  is orthonormal. Therefore, substituting for   gives a necessary 

condition on Ψ that will guarantee an orthonormal multi-resolution analysis 

2
1

0

2  
( ( 2 )) 1

2

l
l

p
m p

n m




 

        .                                                                      (2.15) 



 

14 
 

A wavelet whose spectrum satisfies the condition in (2.14) will be guaranteed by (2.15) 

that the Poisson summation for ( ) is equal to 1 everywhere. Therefore, (2.15) is 

necessary and sufficient to guarantee that ( )x generates an orthonormal multi-resolution 

analysis.  

 

 

2.6 Matching wavelets 

Finding the matched wavelet is done numerically with discrete Ψ. We will assume that 

the resultant wavelet is real and therefore has a symmetric frequency spectrum. Assume 

the scaling function derived from the wavelet in (2.10) has a minimum sample spacing of 

min / 2  l    the minimum sample spacing required of is 2 1
min / 2  l    . Now let's 

assume that ( )  is band-limited to L UK K    , where ,L UK K   , then the 

argument of (2.15) is limited to  

12  
( 2 )

2
l

L Up
K n m K

      .                                                                                                (2.16) 

Let 
2

min( ) (2 )Y k k    KZ , then condition (2.15)and (2.16)  become 

   1

0

2  
( ( 2 )) 1

2

l
l

p
m p

Y n m




 

                                                                                                     (2.17) 

1 1 12  
2 ( 2 ) 2   0 M

2
M l M

L Up
K n m K

          .                                                                (2.18) 

Assuming that ( ) ( )     , the conditions is in (2.17) generate a set of L linear 

constrains in ( )Y k  of the form 

1

( ) 1
L

ik
i

a Y k


 ,                                                                                                                         (2.19) 
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where 12M
Lk K    ,…, 12M

UK    since n and m are integers and we are matching only 

one side of a symmetric spectrum.  Let the desired signal spectrum, sampled at min2  , 

be given as ( )S k and let 
2

( ) ( )W k S k be its power spectrum. Then the objective 

function, E, to be minimized is defined as the mean square error between Y and W, 

normalized by the energy in W. 

( ) ( )T

T

W Y W Y
E

W W

 
                                                                                             (2.20) 

1AY                                                                                                                 (2.21) 

where  ikA a  and 1


 is a vector of 1’s with length L. It is important to note that A is a 

function of KL and KU only. After setting the band-limits set, and deriving A, the 

objective function is chosen to be the mean square error between the power spectra of Ψ 

and S, so that the minimization problem is linear and has a closed form solution using 

Lagrangian multipliers. The Lagrangian function is given as  

( ) ( )
( 1)

T

T

W Y W Y
L AY

W W
 

  


  ,                                                                        (2.22) 

 and the object function is minimized by setting 0L  , which gives 

 1( ) (1 )T TY A AA AW W  


   .                                                                             (2.23) 

Since
2

( ) ( )Y k k    ,  we include the inequality constraints ( ) 0Y k  .  If the solution in 

(2.23) has a negative value, then it can be set to 0 with an additional equality constraint in 

A. From the error, E, given by  

1(1 ) ( ) (1 )T T

T

AW AA AW
E

W W

 


 

,
                                                                                          (2.24) 
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we see that the error in the match is a function of the deviation of AW from1


.  If the 

desired signal already satisfies the constraints for an orthonormal MRA, then the 

deviation from 1


 is 0, E = 0, and from (2.23) Y=W.  As W moves away from the 

constraints, the error in the match, E, increases. It can also be seen from both (2.23) and 

(2.24) that any scale factor applied to W would affect the solution, Y, and the error in the 

match E .  Let the input spectrum be normalized by a constant α; the solution in (2.23) 

and the error in (23) becomes  

1 1 1
( ) ( ) (1 )T TY a A AA AW W

a a
                                                                                       (2.25) 

11 1
(1 ) ( ) (1 )

( )
1

T T

T

AW AA AW
a aE a

W W
a

 
        .                                                                         (2.26) 

Setting ( ) / 0dE a da   and solving for a  gives the value of the normalizing factor on W

that will produce the minimum error E . 

1

1

1 ( )

1 ( ) 1

T T

T T

AA AW
a

AA



                                                                                                         (2.27) 

 
 
 

2.7 Matching the phase of the wavelet to the signal 

Since the resultant of the previous step yields the wavelet magnitude spectrum only, the 

wavelet ( )Y t is symmetrical in the time domain with zero degree phases.  In order to 

match the group delay of the resultant wavelet to the group delay of a desired signal, we 

rotate the phase of the wavelet in the time domain so that it matches the desired signal in 

a least squares sense. The energy difference between the desired signal and the matched 

wavelets is given by:   
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2

1

( ) ( ( ) ( , ))
N

k i i k
i

R t S t Y t 


    ,                                                                    (2.28) 

where N is sample number,  is the phase angle of the wavelet, k  stand for the k-th 

iterate of .  Our objective is to minimize ( )R t  by rotating the wavelet phase  given by 

the formula: 

( , ) ( )cos( ) ( )sin( )HY t Y t Y t      ,                                                                 (2.29) 

here, ( )HY t  is the imaginary function of Hilbert transform of the wavelet ( )Y t .  

The phase matching part of the wavelet matching algorithm is as follows: 

1) Take the Hilbert transform of the wavelet ( )Y t  to obtain its imaginary function

( )HY t . 

2) Initialize the  value starting from 0 with step 0.5   or less to update

1k k     . 

3) Calculate ( , )Y t   by the formula (2.29). 

4) Compute the least-squares residuals 1( )kR t   from the formula (2.28). 

5) If 1( )kR t  < ( )kR t  , return to step 2 continuously repeat step 2 to 5 until 1( )kR t  >

( )kR t , stop updating k . 

( , )kY t  is a matched wavelet of the desired signal with orthonormal features. Since the 

phase matching is implemented in the time domain which also automatically satisfies the 

periodicity constraints and the same constrains used to match the amplitude spectra. 

2.8 Examples of application 

To demonstrate the performance of the spectrum matching algorithm, the algorithm is 

applied to the transient signal given by the following formula: 
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0( ) 0.1 cos( ) ( )t
Tf t te t u t  ,                                                                   (2.30) 

where ( )u t is the unit-step function. The transient signal in this example was constructed 

by setting 2  and 0 1.6  , and dilating it such that its spectrum, ( )TF  , has 

maximum energy in the pass band 2 / 3 8 / 3    .  Figure 2.5a shows the transient 

signal.  Let 5l  so that 52 / 2   . The optimization procedure operates on the non-

zero portion of the positive frequency axis, K=11, 12, …, 43. The constraint matrix,

 ikA a  derived from (2.17) is given in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

We calculate ( )W k  using the following expression: 2
( ) ( )mW k k    .  The amplitude of 

the matched wavelet in the positive band is shown in Figure 2.4(a). It can be shown that 

the Poisson summation of the matched wavelet is 
2

( 2 ) 1
m

m 




   , meaning that it  

is  orthonormal. The phase of the matched wavelet can be obtained by rotating its angle 

so that it matches the original signal energy in the time domain in the least squares sense. 

           A = 

 

Figure 2.3 Constraint matrix A for   , 2 / 3,8 / 3Kl Ku   . 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
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We follow the procedures described in section 6 and obtain the best matched wavelet 

after rotating 155 degree from the zero phase matched wavelet. The resulting of the 

matched wavelet is shown by the red solid line in Figure 2.5b.  Although the function that 

is used in this example is not band-limited, the calculated wavelet and the signal are well 

matched. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 The transient fT(t) and corresponding adapted wavelets are presented. (a) 
The transient signal. (b) Dashed blue line: the optimal adapted wavelet matched by 
the method described in this paper. Solid red line: original signal. 
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Figure 2.4 (a) The amplitude of the spectrum of the transient signal fT(t) and  
corresponding adapted wavelet are presented. Red line: the optimal wavelet. Blue 
line: original signal. (b) The matched wavelet with zero degree phases. 
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We applied the method described in this paper to a carefully designed synthetic seismic 

signal.  Figure 2.6 shows a synthetic trace generated by the wave propagation equation 

using Ricker wavelets with different center frequencies as source wavelets; the center 

frequencies are at 20Hz, 40Hz, 55Hz, and 70 Hz respectively. We considered intrinsic 

attenuation in the synthetic data by varying the quality factor Q for the different 

synthetics; we see that the amplitude of the signal decreases and wavelets are lengthened 

gradually along the time axes of each trace. The synthetic trace is a superposition of four 

traces. The Fourier spectral analysis of the band-limited signal is shown in Figure 2.7b 

(blue line).  In order to reduce spectral leakage from adjacent Fourier frequency bins and 

thereby improve the dynamic range of the analysis (Percival, 1993), we use the power-

spectral density to characterize the signal power instead of directly using the Fourier 

energy spectrum of the signal (Figure 2.7b red line).    We dilate the signal such that its 

spectrum has maximum energy in the pass band 2 /3,8 /3  . Hence, the constraint 

matrix, A, remains unchanged. 
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Figure 2.6 Synthetic trace composed of Ricker wavelets with different center 
frequencies. Q values are specified at the top. 
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Figure 2.7c shows the spectra of the truncated signal and the matched wavelet. The 

matched zero degree phase wavelet is shown in Figure 2.7d.  Since the key elements of 

Figure 2.7 (a) The synthetic seismic trace. (b) The normalized Fourier frequency 
spectrum (blue line) and the power spectral density (red line) of the signal. (c) The 
modulated spectrum of the signal and corresponding adapted wavelet. Red line: 
the optimal adapted wavelet. Blue line: the synthetic signal. (d) The optimal 
adapted matched orthogonal wavelet. 
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the method in the extraction of analysis wavelet from a given signal is similar to a 

sharpening filter used in signal enhancement, thus for signal detection and recognition 

applications, the decomposition of a signal by a wavelet matched to the signal would 

produce a sharper or taller peak in time-scale space as compared to standard non-matched 

wavelets. We have tested this concept through time-frequency decomposition of the 

synthetic signal using a hybrid wavelet transform (the method will be introduced in 

chapter 3). We used the matched wavelet as a mother wavelet to decompose the synthetic 

seismic signal into the time-frequency domain.   For comparison, three different wavelets 

are used to decompose the signal, the matched wavelet, the Morlet wavelet and the 

Ricker wavelet respectively. The Morlet and Ricker wavelets are popular for various time 

frequency decomposition methods in seismic data processing.  Figure 2.8 shows the 

results of the wavelet decomposition of the synthetic signal using three different 

wavelets.  The matched wavelet clearly results in a prominent peak at the appropriate 

time and frequency location for spectral decomposition as compared to the Morlet 

wavelet and the Ricker wavelet.  Each individual event spectrum shown in Figure 2.6 can 

be clearly identified in the corresponding the time-frequency decomposition plot in 

Figure 8a. Specifically, two events close to 230 milliseconds and 470 milliseconds 

containing two different center frequency wavelets, which were not isolated by the 

Ricker wavelet decomposition, are clearly defined by the matched wavelet 

decomposition. The Ricker wavelet decomposition smeared the energy of the two events    
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Figure 2.8  The results of time-frequency decomposition of the synthetic trace by 
using three different wavelets. (a) is the result of time –frequency using the matched 
wavelet, (b) is the result using the Morlet wavelet , and (c) is the result using the 
Ricker wavelet. 
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with the different frequencies near 230  milliseconds   and missed   a high   frequency   

event  near  470  milliseconds. The Morlet wavelet is very well localized in the frequency 

domain but poor for its time resolution. In this case, the Morlet wavelet couldn’t detect 

the events at 320 milliseconds because the two events are too close to each other in the 

time series, which is beyond of its time resolution. 

 

2.9  Discussions 
 
The Heisenberg Uncertainty Principle states that the wavelength and frequency 

bandwidth of a waveform cannot both be arbitrarily decreased simultaneously. The 

uncertainty principle for waveform analysis says that if the effective bandwidth of a 

signal is  ω, then the effective duration cannot be less than 1/ω and vice versa. This 

principle is mathematically formulated as:  

Δ τ. Δω ൒ 1/2,                                                                                     (2.31) 

where Δ refers to the standard deviation, τ is the time, and ω is angular frequency.  

Therefore,  it can be inferred that one can achieve an arbitrary level of resolution in one 

domain at the expense of the other. We quantify each wavelet at every frequency for 

standard deviation in time and frequency by using the following equation:  

ߪ ൌ ሼ∑ܲ ሺݔሻሺݔ െ  ሻଶሽሺଵ/ଶሻ   ,                                                             (2.32)ߤ

where P(x) represents the amplitude distribution with respect to time or frequency,  x is 

the time or frequency sample location, and μ is the mean. Figure 2.9a illustrates the 

relationship between time-standard deviations  and center frequency for  the three 

wavelet types of interest and Figure 2.9b shows the uncertainty product Δt*Δf versus 

center frequency.  
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We observe a trend for all three wavelets, that as the center frequency increases, 

corresponding to a higher  frequency standard deviation, there is a decrease in the time 

standard deviation and vice versa. We observe that the Ricker wavelets  have the best 

time resolution of the three wavelets, which agrees with the observation that the Rcker 

wavelet is more compact in time than the Morlet wavelet in synthetic seismic data plots.  

This result does not contradict the observation that a wavelet matched to the signal 

produces higher resolution in time-frequency space than standard wavelets because the 

results strictly address the time-frequency characteristics of the wavelet itself. Spectral 

decomposition using the wavelet transform is similar to convolution; a mother wavelet 

that “looks” like a signal of interest will yield optimal coefficients.    

The methodology described in this chapter for wavelet synthesis provides a mechanism to 

create an orthonormal basis that is suitable to match a signal of interest. The primary 

features of the seismic signal can be captured with a matching wavelet that preserves the 

temporal relationships of the features. However, to achieve an exact wavelet match to the 

signal of interest, the signal must be orthonormal.  Meyer’s wavelet is an example of an 

 

Figure 2.9 (a) The standard deviation in time versus the center frequency. (b) The 

uncertainty product  Δt*Δf  versus the center frequency. 
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orthonormal signal that can be exactly matched to a wavelet using the proposed algorithm 

(Chapa, 2000). The seismic signal is not orthonormal; hence an exact match cannot be 

expected. However, an exact match to the seismic signal might not be necessary because 

the wavelet itself is used to decompose the signal into different frequencies. For a 

matched wavelet, we expect that the signal energy can be captured in a narrow frequency 

band.  The discrete solution for the matched wavelet spectrum is identical to that of the 

continuous solution at the sampled frequencies according to Equations 2.15. By 

increasing the number of Fourier coefficients and the number of sampled frequencies, the 

accuracy of the calculations increases. However, the computation time also increases.  

We observe that the matched wavelet includes ripples at the baseline of the seismic 

signal. These ripples are the result of using hard cutoffs of the rectangular function to 

obtain the necessary pass band. This problem can be mitigated by using a window 

function such as the Hanning or Gaussian window. Furthermore, there are precision 

errors in the matrix calculation. The matched wavelet technique requires further testing to 

gauge its performance in extracting seismic features and detecting artifacts in noisy 

seismic signals. 

 

 
2.10  Conclusions 

In this chapter, I have developed methods for estimating orthogonal wavelets that are 

matched to a given signal in the least squares sense. Although the method of matching 

wavelets to a desired signal was derived from the constraint condition of orthonormal 

multi-resolution analysis (OMRA) using scaling factor of 2, it can also be generalized to 

an M-band wavelet system. We applied the method to extract a matched wavelet from a 
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carefully designed synthetic seismic trace and applied it as a mother wavelet to 

decompose the signal into the time-frequency domain using the hybrid wavelet transform. 

The results show that the matched wavelets discriminate features in complex signals 

better than standard wavelets, such as Morlet wavelets (Chui, 1992) and Ricker wavelet, 

which are commonly used in applied geophysics. 
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CCHHAAPPTTEERR  33  

A hybrid wavelet transform based on CWT and non-linear transform 

3.1 Summary  

A high-resolution approach to estimate time-frequency spectral and associated 

amplitudes through the use of combination of continuous wavelet transform (CWT) with 

a non-linear transform is presented. This is a two-step procedure in which one dimension 

seismic trace is first decomposed into two dimensions of time frequency domain by 

continuous wavelet transform, followed by the morphological top-hat transforms which 

has been widely used to enhance and detect the weak signal in image process areas. This 

combinational use of the CWT and a nonlinear transform is termed the hybrid wavelet 

transform (HWT). A synthetic seismic signal and field data are provided to demonstrate 

the performance of the hybrid wavelet transforms for high-resolution time-frequency 

decomposition as well as instantaneous amplitude estimation. The results show that the 

new method provides the high time and frequency resolution when compared to the 

smoothed continuous wavelet transform. When combined with conventional wavelet 

analysis and image-filtering techniques, the HWT provides an integrated, versatile, and 

efficient approach for analyzing non-stationary seismic signals with promising results as 

applied to the seismic attributes extraction and reservoir feature detection. 

2.2 Introduction 

Generally, seismic traces are statistically non-stationary. Although periodic wavelet 

features can dominate the time series, these signals exhibit statistical variation in 

amplitude and frequency over time. Wavelet methods can be used to decompose the time 

series into the time-frequency domain.  The continuous wavelet transform time-frequency 
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decomposition method has become a useful tool in seismic data processing (Chakraborty 

and Okaya, 1995), and in recent years, has been widely applied to the analysis of the 

frequency content of seismic signals, mapping of channel deposits, and  detection of gas 

by mapping low-frequency anomalies beneath the reservoir (Kazemeini, 2009),  

providing an effective means of quantifying non-stationary seismic signals.  The complex 

continuous wavelet transform (CWT) yields information on both the amplitude and phase 

of seismic signals (Sinha, et al., 2005); the phase spectrum can highlight discontinuities 

such as faults.  The Heisenberg Uncertainty Principle states that we cannot 

simultaneously optimize both time and frequency resolution (Mallat, 1999; Morlet, et al., 

1982). In order to obtain optimal frequency resolution in the time-frequency analysis, we 

have to sacrifice temporal resolution. The CWT utilizes a wavelet dictionary to generate a 

highly redundant representation of the signal in the frequency domain (i.e. the filtered 

spectra are not independent); the redundancy is augmented at higher frequencies.  

Because of this effect, the CWT cannot simultaneously yield optimal time and frequency 

resolution; instead, it provides optimal frequency resolution at low frequencies and 

optimal time resolution at high frequencies. However, we can minimize this shortcoming 

by implementing a combination of the continuous wavelet transform and the 

morphological top hat nonlinear localization transform.  

In this chapter, I will introduce a time-frequency decomposition method that incorporates 

two steps to analyze the seismic data. The first step is to process the one-dimensional 

seismic data by the continuous wavelet transform, yielding two-dimensional time-

frequency components related to the choice of wavelet dictionary members (basis); I 

expand the data using a basis derived from the data. The second step is to apply the 
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morphological top-hat non-linear localization transform to isolate and extract the local 

peak energy in the time-frequency domain. The hybrid wavelet transform yields a high-

resolution time-frequency distribution, enabling precise location and discrimination of 

reflectors.  These characteristics of the hybrid wavelet transform spectral decomposition 

method substantially enhance the utility of spectral analysis for reservoir characterization 

and attenuation measurement.  

 
3.3 Continuous wavelet transform (CWT) and time-frequency decomposition 

The continuous wavelet transform (CWT) is a time-frequency analysis method, which 

differs from the traditional Short-Time Fourier Transform (STFT).  The STFT uses a 

constant window size and slides along in time, computing the FFT at each time using 

only the data within the window. Utilization of this method mitigates the frequency 

localization problem, but the result is still dependent on the window size used. The 

primary problem with the STFT is the inconsistent treatment of different frequencies: at 

low frequencies there are so few periods within the window that frequency localization is 

lost, while at high frequencies there are so many periods that time localization is lost. The 

continuous wavelet transform corrects this inconsistency by utilizing a variable window 

length that is related to the scale of observation (frequency); this flexibility allows for the 

isolation of high-frequency features. Another important difference between the STFT and 

the CWT is the fact that the CWT is not limited to the use of sinusoidal basis functions. 

Rather, a wide selection of localized waveforms can be utilized provided they satisfy pre-

defined mathematical criterion (3.3). The wavelet transform of a continuous time signal, 

f(x), is defined as: 

,( , ) ( ) ( )sW s f x x dx  



   ,                                                                   (3.1) 
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where ,

1
( ) ( )s

x
x

ss


  
 , s and  are called scale and translation parameters, 

respectively. Given ( , )W s  , f(x) can be obtained using the inverse continuous wavelet 

transform : 

   ,

2

( )1
( ) ( , ) s x

f x W s d ds
C s







 




    ,                                                                        (3.2) 

 where                    
2

( )u
C du

u






    .                                                                         (3.3) 

( )u  is the Fourier transform of ( )x , C  is known as the admissibility criterion. 

We implement the wavelet transform by computing a convolution of the seismic trace 

with the members of a scaled wavelet dictionary. The relative contribution to the total 

energy contained within the signal at a specific scale is given by the scale-dependent 

energy distribution:  

21
( ) ( , )E s W s d

C 


 



      .                                                                       (3.4)  

Peaks in E(s) highlight the dominant energetic scales within the signal. The different 

wavelets we choose will control the time and frequency resolution. The Morlet wavelet, 

which is the most popular complex wavelet used in practice, is very well localized in the 

frequency domain.  
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Figure 3.1  Construction of the Morlet wavelet as a cosine curve modulated by a 

Gaussian in the time domain (left) and its dictionary in the frequency domain (right up) 

and after normalization (right down). 

The Morlet wavelet response pairs in the time and frequency domains are:    

       2( ) exp( )exp( )j j jg t a t iw t                                                                         (3.5) 

2( )
( ) ( ) exp( ) .exp( )  

4
j

j j
j j

w w
G w g t iwt dt

a a





 
                                              (3.6) 

where ja is scale. We may choose 2
2

ln 2

4j ja 


  and design narrow band filters (see 

Figure 3.1) that constitute the wavelet dictionary.  

 

3.4 Converting scale to frequency   

We convert the scale-dependent wavelet energy spectrum of the signal, E(s), to a 

frequency-dependent wavelet energy-spectrum in order to analyze the Fourier energy 

spectrum of the signal.  To do this, we must convert from the wavelet a scale to a 

2

1
( ) b

x

f

b

f x e
f




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characteristic frequency of the wavelet such as the spectral peak frequency or the pass-

band central frequency (Figure3.2). The frequency associated with a wavelet of arbitrary 

scale is given by:   

.

Fc
Fs

S



    ,                                                                                    (3.7)      

where S is the  scale, Δ is the sampling period, and Fc is the center frequency of the 

wavelet. The calculated frequency Fs  is called the pseudo-frequency with units in Hz. In 

practice, a fine discretization of the CWT is computed wherein the τ location is 

discretized at the sampling interval and the scale is discretized logarithmically.  

 

3.5 Example of wavelet analysis to the synthetic data 

We use a synthetic seismic signal in order to study the time-localization properties of 

CWT methods. Figure 3.3a shows the synthetic trace generated by the wave propagation 

 

Figure 3.2 The center frequency of a Ricker wavelet (red line) is approximated by 
matching to the function cos(2 )cf t   (blue line). 25cf Hz  provides the best fit and 

is taken as the center frequency of the wavelet. 
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equation of Ricker wavelets with center frequency equal to  20Hz, 40Hz, 55Hz, and 70 

Hz respectively. Intrinsic attenuation was also accounted for in the synthetic data by 

varying the quality factor Q. As we vary the wavelet center frequency, we observe that 

the amplitude of the signal decreases and the wavelets are lengthened in time. The 

synthetic trace is a superposition of the four different traces shown in Figure 3.3a.   

The Figure 3.3b shows time-frequency analysis for a synthetic trace by continuous 

wavelet transform. The first seismic event at approximately 50 milliseconds with a center 

frequency of 40 Hz is isolated at the location of peak energy on the CWP output, the 

energy of the second seismic event near 230 milliseconds, which consists of a 20 Hz 

wavelet and 70 Hz wavelet arriving simultaneously is distributed from 14 Hz to 80 Hz. 

Figure 3.3 (a) Synthetic trace comprised of Ricker wavelets with different center 

frequencies, wave propagation attenuation was included. (b) Time-frequency 

distribution of synthetic trace by the continuous wavelet transforms.    
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Although there are two peak energies at 20 and 70 Hz, they overlap and could not be 

clearly resolved. Similar results were shown for the event near 470 milliseconds. The 

events near 320, 350, and 710 milliseconds can be identified in the frequency domain 

using individual peak energy locations. Note also that the event near 530 milliseconds is 

nearly invisible in the frequency domain due to its relatively weak energy content 

compared to the previous events.  

Because of the increased redundancy at higher frequencies and the variable window 

length, the CWT cannot provide optimal time and frequency resolution simultaneously.    

Instead, it yields good time resolution and poor frequency resolution at high frequencies 

and good frequency resolution and poor time resolution at low frequencies.  Furthermore, 

for reservoir characterization applications, we are more interested in the spectral 

characteristics of individual reflectors than composite windowed responses (measuring 

attenuation for example); best results are achieved if the reflector of interest is isolated by 

the decomposition method. In order to achieve this optimization, we target the local 

spectral energy rather than the more global spectral energy distribution given by Fourier 

transform.  We achieve this by applying a combination of the continuous wavelet 

transform with a nonlinear transform to extract the local extreme value. This hybrid 

wavelet transform can provides better time and frequency resolution and more accurate 

amplitude estimates as compared to conventional continuous wavelet transform.  The top-

hat transform is a nonlinear transform used in digital signal processing to extract the local 

extreme value.  Using binary logical operations, the top-hat transform can be 

implemented much more efficiently and faster than conventional methods to find local 

extreme values.  
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3.6 The morphological top-hat transforms 

Image morphology includes a broad set of image-processing operations that process 

images based on shapes. Morphological operations apply a structuring element to an 

input image, creating an output image that is the same size as the input images (Gonzales, 

2002). The most basic morphological operations are dilation and erosion. Dilation adds 

pixels to the boundaries of objects in an image, while erosion removes pixels on object 

boundaries. The number of pixels added or removed from the objects in an image 

depends on the size and shape of the structuring element used to process the image.  

Mathematically, dilation is defined in terms of set operations.  With A and B as sets in Z2, 

the dilation of A by B, denoted A B , is defined as : 

   
 ( , ) min ( , ) ( , ) | ( ), ( ) ;( , )x bA B s t A s x t y B x y s x t y D x y D           ,           (3.8)                        

where A is object and B is the reflection of the structuring element, A-BZ, and xD  and 

bD  are the domains of A and B. The definition of erosion is similar to that of dilation. 

The erosion of A by B, denoted A B, is defined as : 

    ( , ) max ( , ) ( , ) | , ) ;( , )x bA B s t A s x t y B x y s x t y D x y D       �  .                (3.9)                         

Figure 3.4 shows a simple set A with length d in the left of picture. A reflection of 

structuring element is in the middle. In this case the structuring element and its reflection 

are equal because B is symmetric with respect to its origin. The dashed line on the right 

shows the original set for reference, and the solid line shows the limit beyond which any 

further displacements of the origin B̂ by z would cause the intersection of B̂  and A to be 

empty. Therefore, all points inside the boundary constitute the dilation of A by B. 
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Figure 3.4 Morphological dilation of an image 

 

Figure 3.5 Morphological erosion of an image 

Figure 3.5 illustrates erosion, which is the opposite of dilation and is a process similar to 

the Figure 3.4. As before, set A is shown as a dashed line for reference in the right of the 

picture. The boundary of the shaded region shows the limit beyond which further 

displacement of the origin of B would cause this set to cease being completely contained 

in A. Thus, the locus of points within this boundary (i.e., the shaded region) constitutes 

the erosion of A by B.  In practical application, dilation and erosion are used most often 

in various combinations as opening and closing in morphological operations. The 

opening of set A by structuring element B, denoted A B , is defined as :  

                           A B = (A B) B .                                                                         (3.10) 
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Thus, the opening A by B is the erosion of A by B, followed by a dilation of results B. 

similarly, the closing of A by structuring element B, denoted A B , is defined as :  

( )A B A B   B .                                                                           (3.11) 

 The closing of A by B is simply the dilation of A by structuring element B, followed by 

the erosion of the result by B.  

Opening and closing of images have a simple geometrical interpretation. Suppose that we 

view an image function ( , )f x y  from 3D perspective (like a relief map), and open f  by 

a spherical structuring element b , viewing this element as a "rolling ball". Then the 

mechanics of opening f by b  may be interpreted geometrically as the process of pushing 

the ball against the underside of the surface, while at the same time rolling it so that the 

entire underside of the surface is traversed. The opening f b , is then the surface defining 

the highest points reached by any part of the sphere as it slides over the entire 

undersurface of f .  Figure 3.6 illustrates this concept.  Figure 3.6a illustrates a 1D scan 

line as a continuous function ( )f x in the top of the figure. Figure 3.6b illustrates the 

 

Figure 3.6  (Top, a) a scan line of function. (Middle, b) positions of rolling ball for 
opening. (Bottom,c) Results of opening. 



 

40 
 

f

x

rolling ball in various positions on the undersurface of f, and Figure 3.6c illustrates the 

result of opening f by b  along the scan line. The peaks that are narrow with respect to 

the diameter of the ball are reduced in amplitude and sharpness. In practical applications, 

opening operations are usually applied to remove small local details, while leaving the 

overall more extensive features relatively intact.  For local extremum value extraction, we 

apply the morphological top-hat transform to remove the background signal and extract 

the regional maximum value.  The morphological top-hat transform is defined as : 

( ) ( )h f f b f f b b     �   ,                                                                  (3.12) 

where, f  is the input function and b  is the structuring element function. This 

transformation is often used to extract the local extreme value and enhancing detail in the 

presence of shading. Figure 3.7 illustrates the result of performing a top-hat 

transformation on a function. Note the enhancement in the second peak at which the 

value is relatively weak. The top-hat transform provides more robust results than can be 

obtained using traditional threshold method that utilize a global threshold function. 

 
 
 
 
 
 
 

 

 

 

Figure 3.7 Top-hat transforms to extract local extreme value, the above line is a function 

containing the local maxima (red line segments), and the lower part is the top hat 

transform results. 
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we can show that this process is equivialent to a thresholding function ( , )f x y with a 

locally varying threshold function ( , )T x y ,  

( , ) {1 if  ( , ) ( , ) or 0 if   ( , ) ( , )}h x y f x y T x y f x y T x y               (3.13) 

where  0 0( , ) ( , )T x y f x y T   The  function 0 ( , )f x y  is the morphological opening of 

f , and the constant 0T  is the result of the application  of thresholding  function applied 

to 0f .  

We provide an example of utilizing the top-hat transform to identify local extreme value 

locations. The matrix A contains two primary regional maxima, 13 and 18, and several 

smaller maxima of 11. The top-hat transform returns a binary logical matrix that identify 

the locations of the regional maxima. 
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Figure 3.8. (top) A matrix A with local values, (bottom) the locations of the regional 
maximum are marked by the top-hat transform 

A =
10    10    10    10    10    10    10    10    10    10
10    13    13    13    10    10    11 10    11 10
10    13    13    13    10    10    10    11 10    10
10    13    13    13    10    10    11 10    11 10
10    10    10    10    10    10    10    10    10    10
10    11 10    10    10    18    18    18    10    10
10    10    10    11 10    18    18    18    10    10
10    10    11 10    10    18    18    18    10    10
10    11 10    11 10    10    10    10    10    10
10    10    10    10    10    10    11 10    10    10

A=
0      0      0      0      0      0      0      0      0      0
0      1      1      1      0      0     1 0     1      0
0      1      1      1      0      0      0     1      0      0
0      1      1      1      0      0      1  0      1 0
0      0      0      0      0      0      0      0      0      0
0     1      0      0      0      1      1      1      0      0
0      0      0     1      0      1      1      1      0      0
0      0      1 0      0      1      1      1      0      0
0     1      0      1 0      0      0      0      0      0
0      0      0      0      0      0     1 0      0      0
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3.7  Combination of CWT and top-hat transform 

The CWT is a tool for analyzing the signal at different frequencies with different 

resolutions. It  is designed to yield good time resolution and poor frequency resolution at 

high frequencies and does not allow the localization of relatively weak high-frequency 

waves due to their low amplitudes.  In order to minimize the time-frequency resolution 

tradeoff effect previously described, we combine the CWT with the top-hat transform to 

extract transients with an inflection point corresponding to a local wave peak and to 

enhance the energy of relatively weak wave peaks.  Local maxima of the signal are 

extracted by means of the  top-hat transform isolating the time location of these 

transients. The proposed method includes two mains steps. The first one is based on the 

continuous wavelet transform applied on each trace of the seismic data to obtain the 

multi-frequency components of the coefficients of the wavelet transform at successive 

frequency. We use a wavelet which has matched to a signal of interest to decompose the 

signal into a time-frequency domain through the continuous wavelet transform because 

the matched wavelets can discriminate various features in complex signals better than 

standard wavelets (Chapa and Rao, 2000).  The second step includes a morphological 

top-hat algorithm which localizes the maxima energy of frequency location 

corresponding to the temporal position. After top-hat transform, the results may contain 

noise along the edges of the local peak zones. To eliminate this noise, a median filter is 

used after top-hat operation.  The workflow is summarized in Figure 3.9. 
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Figure 3.9  The flowchart for spectral decomposition using  the hybrid wavelet transform. 

Input:
Seismic Data

Complex  
Continuous Wavelet Transform

Morphological 
Top-hat Transform

Median
Filter

Output:
Time Frequency Decomposition
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The middle plot of Figure 3.10 shows the result of time-frequency decomposition of a 

synthetic seismic trace by using the hybrid wavelet transform. The frequency content of 

the different events is sharply defined in the resulting frequency-domain plot. 

Specifically, two events near 230 milliseconds and 470 milliseconds, illuminated by 

wavelets with two different center frequencies, that failed to separate by direct 

application of the continuous wavelet transform, are split by the new decomposition 

method HWT.  Note that the weak event near 530 milliseconds is also highlighted in the 

corresponding frequency section. In the time-frequency plane, a clear downward shift in 

the center frequency of the trace with time is evident as a result of wavelet attenuation. It 

 

Figure 3.10 Comparison of results of application of spectral decomposition to a (a) 

synthetic seismic trace using (b) the hybrid wavelet transform and (c) continuous 

wavelet transform. 
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can be found that the event with center frequency 40Hz Ricker wavelet at time 55 

milliseconds, its peak frequency shifts down to 36Hz as it travels to 318 milliseconds, to 

34 Hz as it propagates to 535 milliseconds.  

To reconstruct the signal back, the inverse continuous wavelet transform is used to take 

the energy in time-frequency domain and transform it back into time domain.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 demonstrates the inverse CWT use the result of hybrid wavelet transform of 

synthetic trace.  The signal is almost reconstructed by using a partial values in the 

transform domain (i.e., have magnitude above a certain thresholds).  Some low-frequency 

signals are lost for trade off providing good time resolution in time series by HWT.   

 

 

Figure3.11. (a) is an original synthetic trace. (b) is an reconstruction of the signal by 

using HWT results. (c) is a  residual between the original and reconstructed signal. (d) 

is the time frequency spectral of HWT. 
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Figure 3.12 Comparison of results of application of spectral decomposition to a (a) real 

seismic trace using (b) the hybrid wavelet transform and (c) continuous wavelet 

transform. 

Figure 3.12 shows the frequency gather of a real seismic trace using the CWT and HWT. 

Clearly the HWT yields superior resolution to the CWT method. The results of the HWT 

are sharper and more focused than are those of the simple CWT. In the result of the new 

method, the energy of events is clearly isolated from low frequency to high frequency, 

whereas they are merged in the CWT result, producing a spuriously continuous energy 

distribution extending from the low- to high- frequency range. The shift from high 

frequencies in shallow layers to low frequencies in deep layers highlights the attenuation 

affect as the seismic wave propagates from shallow to deep geology. 
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3.8  Discussions 

Unlike Fourier analysis, wavelet-transform-based spectral decomposition can be 

implemented using a non-unique process or a non-unique basis; thus a single seismic 

trace can produce different time-frequency character analysis (Castagna and Sun, 2006). 

The wavelet we choose can significantly influence the time and frequency resolution of 

the result. In signal feature detection and pattern recognition, the time-frequency 

decomposition of a signal in the presence of noise using a wavelet matched to the signal 

produces a better resolved image as compared to conventional unmatched wavelets.  The 

seismic signal is a complicated signal having low amplitudes, making it difficult to 

analyze. However, the signal properties of seismic data can be enhanced by the use of 

matched wavelets, which performs the much closer analysis of the signal.  The method to 

extract matched wavelet described in the previous chapter is based on discrete wavelet 

transform (DWT); but, the wavelet transform of signal with DWT accepts only integer 

scale values. DWT cannot provide analysis band with any arbitrary fine frequency 

sampling. The continuous wavelet transform (CWT) still uses discretely sampled data; 

however the shifting process is a smooth operation across the length of the sampled data, 

and the scaling (frequency) can be defined from the minimum (original signal frequency) 

to a maximum chosen by the user, thus giving a much finer  frequency intervals.  

For signals corrupted by strong background noise, it is usually very difficult to perform 

signal detection and parameter estimation in either the time domain or the frequency 

domain. But, they may be identified in the joint time-frequency domain by taking wavelet 

transform (Victor, 2002). Signal often concentrates its energy within a limited time and a 

limited frequency band; while random noise typically has energy spread over the time- 
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frequency plane. By combing the wavelet scheme, which represents the signal and noise 

in the time-frequency domain, with the mathematical morphology scheme, which 

separates the signal coefficients from the noise coefficients by using an appropriate 

thresholding, signal detection and recognition become much easier. However, some 

interesting maxima corresponding to singularities are difficult to pick up from the data 

which have very low value. This is because relevant wavelet coefficients are embedded 

into non-specific background. Maxima which are difficult to locate are also difficult to 

characterize by wavelet-modulus maxima (Mallat and Hwang, 1992; Bouyahia, 2009). 

This makes top-hat algorithm detection and characterization become a very difficult task 

if use a fixed thresholding in the formula (3.13). To overcome this problem, we use 

regional thresholding or local thresholding to implement the hot-hat algorithm. Local 

thresholding depends on the data histogram, local statistics such as mean and standard 

deviation, or the local gradient. 

 

3.9  Conclusions 

In this chapter we presented and developed wavelet-based techniques for high-resolution 

time-frequency decomposition from seismic data. Wavelet-based time-frequency 

decomposition is a straightforward transform with low computational complexity 

compared to matching pursuit for time-frequency decomposition which is an adaptive but 

expensive iterative approach. This is a two-step procedure which utilizes the continuous 

wavelet transform to obtain two dimensional time-frequency spectral of the signal, 

followed by the morphological top-hat transforms to extract maxima associated with only 

the specific frequencies of interest. This combinational use of the CWT and a nonlinear 
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transform is referred to herein as the hybrid wavelet transform (HWT). A synthetic 

seismic signal and field data are provided to demonstrate the performance of the hybrid 

wavelet transforms for high-resolution time-frequency decomposition as well as 

instantaneous amplitude estimation. The results show that the new method provides the 

high time and frequency resolution when compared to the smoothed continuous wavelet 

transform. Combined with conventional wavelet analysis and image-filtering techniques, 

the HWT offers an integrated, versatile, and efficient approach for analyzing non-

stationary seismic signals with promising results when applied to the seismic attributes 

extraction and reservoir feature detection. 
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CCHHAAPPTTEERR  44  

Attenuation estimation with continuous wavelet transforms 

 

4.1 Summary 

The spectral ratio method is a popular means of measuring seismic attenuation. As ratios 

are particularly sensitive to noise and spectral errors, the precise estimation of the signal 

spectrum is a key to making robust attenuation measurements.  The spectrum of the 

signal may be affected by many factors, for example, thin bed influences (Hackert et al., 

2004), interbed multiples and other noise, and windowing.  Seismic attenuation 

measurements from surface seismic data using spectral ratios are particularly sensitive to 

inaccurate spectral estimation. Spectral ratios of Fourier spectral estimates are subject to 

inaccuracies due to windowing effects, noise, and spectral nulls caused by interfering 

reflectors. We have found that spectral ratios obtained using continuous wavelet 

transforms as compared to Fourier ratios are more accurate, less subject to windowing 

problems, and more robust in the presence of noise, which results in  a  more robust and 

effective means of estimating Q. 

 

4.2 Introduction 

It is common practice to express seismic attenuation in terms of the quality factor (Q). 

The spectral amplitude-ratio technique is a popular method of estimating Q, because it is 

independent of the source influence. Accurate estimation of the signal spectrum is a key 

to accurately determining Q. However, in practice there are many difficulties to estimate 

the signal spectrum correctly. First, it is almost impossible to remove the reflectivity 
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spectrum from the spectral estimates. This would require isolating and performing 

spectral estimation on reflections from two individual reflectors. However a seismic 

event is usually a complex superposition of many reflections. Second, the conventional 

spectral analysis method using Fourier Transforms temporally localized by windowing 

distorts the spectrum. Third, the noise spectrum will certainly cause severe degradation in 

the low SNR frequency range (Turner and Siggnis, 1994). Wavelet time-frequency 

analysis provides an alternative approach to determining the local characteristics of a 

signal. A variety of wavelet analysis methods had been applied in the literature for 

estimating Q since Dr. Taner proposed doing so in 1983. James and Knight (2003) 

applied the S-transform to measure the centroid frequency shift to calculate Q for ground-

penetrating radar data. This method can be applied to seismic reflection data in an 

analogous fashion.  

In this chapter, we discuss the estimation of instantaneous spectral of the signal using the 

continuous wavelet transform (CWT) and compute Q in the time-frequency domain using 

spectral-ratios. We find that this method exhibits several advantages: (1) In comparison 

to conventional Fourier spectral estimation with wide windows, the CWT can directly 

determine the signal spectrum for individual events. These events may be composite 

signals of sub-resolution reflectors, but the severe spectral notching that characterizes 

wide window Fourier spectral estimation from multiple events in the window is reduced. 

(2) The CWT avoids smearing the spectrum as a consequence of the temporal window 

influence. (3) Scale-based wavelet transform filtering takes advantage of the fact that the 

noise due to domain boundaries is at a smaller scale than the signal due to the area of 
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interest. Thus, by selecting all areas at an optimal scale, noise due to the domain 

boundaries can be easily eliminated.  

The continuous wavelet transform is a well-known approach to separating objects at 

different scales. Spectral ratios derived from CWT spectra are more robust in the 

presence of noise.  We will study the effects of windowing and noise in comparing 

Fourier and CWT attenuation estimation on both synthetic seismograms and laboratory 

signals.  

 

4.3 Methods 

By definition, attenuation affects the amplitude spectrum of the propagating seismic 

wavelet and thus the resulting reflection seismogram. A spherical harmonic wave ( , )A R 

propagating in an attenuating medium can be described as:  

0 0( , ) ( , ) ( ) ( ) ( ) exp( ( ) ) exp( / )A R A R G R G I K r R i R V         ,                        (4.1) 

where, ( , )A R   is the wave amplitude at a distance R  from the source, 0 ( , )A R  is the 

amplitude at the source, V is the frequency dependent wave velocity in the medium, 

( )G R is geometric spreading, ( )G I is instrument response, and ( )K r  is the loss due to 

reflection and transmission. The exponential term exp( ( ) )R   is the anelastic 

attenuation in the medium. The second exponential term exp( / )i R V is a phase delay. 

If we assume that the attenuation coefficient ( )   is linearly dependent upon frequency 

within a limited bandwidth, then Q is nearly constant over the frequency range providing 

the velocity dispersion is small. In reality, a seismic record contains a superposition of 

reflections from a great many impedance contrasts that will overlap temporally with one 
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another. However, suppose that we can isolate two discrete seismic events, then the 

spectral ratio method for estimating Q can be expressed as follows:  

2 2 2 2 1 2 2
1 2 1 2

1 1 1 1 2 1 1

( , ) ( , ) ( ) ( )
. . .exp ( )( ).exp( ( ))

( , ) ( , ) ( ) ( )

A R A R R G I K r
R R i R R

A R A R R G I K r

    
 

     ,         (4.2) 

The exponential term exp( ( 1 2))i R R   is purely a time delay that does not enter into the 

amplitudes, and therefore it can be omitted. Then we obtain:  

1 2 2 1 2 2
1 2

1 1 2 1 1

( , ) ( ) ( )
( ) ( ) {log( ) log( ) log( ) log( )}

( , ) ( ) ( )

A R R G I K r f
R R

A R R G I K r QV

  


        .        (4.3) 

Here we assume, 

1 2 2

2 1 1

( ) ( )
log( ) log( ) log( )

( ) ( )

R G I K r
const

R G I K r
      .                                                              (4.4) 

Thus the logarithm of the ratio of the spectra of the two reflected wavelets is assumed to 

be a linear function of frequency whose slope will estimate Q. In particular, if reflection 

K is from the top of an interval containing a gas reservoir and reflection J is from the 

bottom of that interval, then we might hope by this method to estimate the Q value of the 

interval containing the reservoir. 
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4.4 Synthetic example and application 

In Q computation, we need to compute the amplitude spectral ratio of two events as 

shown synthetically in Figure 4.1. We used a 25 Hz Ricker wavelet as a source wavelet, a 

wave velocity of 3000m/s, a distance between two events of 1100m, and a constant Q of 

40.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 shows the effect of added Gaussian noise (SNR=12 dB). The Fourier 

amplitude spectrum (Figure 4.2a) shows the spectral oscillation caused by noise, which 

influences the slope of a best-fit line and the accuracy of Q estimation.  However the 

CWT time-frequency plot shows less oscillation due to noise (Figure 4.2c and 4.2e).  

Since seismic data is band limited, our calculation of amplitude spectral ratio is located 

within the band of the data. If we select the frequency range outside the range of the 

signal, the results of estimated Q value would be unreliable. 

 

Figure 4.1 (a) and (b) are two synthetic events and their amplitude spectral, the red 
line is the first event and blue line is second event. (cdef) are signals and 
corresponding time-frequency decompositions with CWT. 
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Figure 4.2  (a)  is the amplitude spectra of two synthetic events with noise, the red 
line is the first event, and the blue line is second event. (bcde) are signals and their 
time-frequency decompositions with CWT. 
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Figure 4.3 (a) is the noise-free Fourier amplitude spectral ratio compared to the correct 
spectral ratio (LnA1-LnA2).  (b) is the amplitude spectral ratio line generated by 
CWT. (c,d) corresponding to (a) and (b) with Gaussian random noise added.  
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The two amplitude spectral ratio lines generated by windowed FFT and CWT 

respectively are shown on the Figure 4.3. Without adding noise to signal, the Q values 

determined by using equation (3) to be 42.13 using the FFT and 39.8 using the CWT, 

which is very close to the true value of Q=40. But, with noise, the FFT gives Q=88.99 

while the CWT spectral ratio gives Q=38.4. The large error using Fourier spectra comes 

from the interplay of windowing and noise. We also applied this method to estimate the 

Q values for ultrasonic pulse transmission measurements of a sandstone sample. The rock 

sample density is 2.16 g/cc, porosity is 31.91%, water saturation is 100%, pore pressure 

is 500psi, and confining pressure is 3500psi. Figure 4.4a shows the data measured in 

laboratory. The waveform A is the reflected waves from the top of the sample and C is 

the transmitted wave. The schematic diagram of the measurement is shown in Figure 

4.4b. 

Figure 4.4 (a) The wave A is reflected from the top of the sample and C is the 
transmitted wave. (b) The schematic diagram of the measurement. 
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Fourier amplitude spectrum of the transmitted wave shows that its amplitude is greater 

than that of the reflected wave around 20k Hz-50k Hz, and its amplitude dramatically 

changes at 70k Hz (Figure 4.5a). This phenomenon shows that the transmitted wave is 

not a pure transmitted wave, and that it may be a superposition of a transmitted wave and 

a reflected wave from side edge (Figure 4.6c and 4.6d). Estimating a Q value using 

Fourier spectra will be influenced by the notching, which was produced by two such 

closely spaced arrivals. For example, Q will be determined to be negative in the 20-50 

kHz frequency range in the case. In contrast, the CWT method may avoid the temporal 

window influence and directly consider two local events. Figure 4.7a is CWT time-

frequency spectrum of the signal, and Figure 4.7b is the threshold-window filter applied 

to time-frequency spectrum in order to focus local energy and better show the downward 

trend in the dominant frequency of the signal with time. In the time-frequency plane, a 

 

 Figure 4.5 (a) is the amplitude spectrum of the signal (FFT), Red and blue lines are A 
wave and C wave, respectively. 
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clear downward shift in the dominant frequency of the trace with time is evident as a 

result of wavelet attenuation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 (c) is the amplitude spectrum of Hilbert transform, note the second peak of 
amplitude.  (d) is the diagram of the possible path of C wave. 

 

Figure 4.7 (a) CWT time-frequency spectrum of the signal, (b) the threshold window filter 
applied to (a). 
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The dominant frequency drops from 0.92 MHz to approximately 0.78 MHz over the 

interval shown. Using our Q value estimation procedure computed Q=45.6. To examine 

the accuracy of this Q value, we applied it to forward modeling through taking the first 

waveform A as a source signal and letting it propagate to the C location with Q=45.6. 

Figure 4.8 shows that the forward modeled signal significantly fits the original signal Q 

in dominant frequency and there is only a minor discrepancy in the relative amplitudes of 

the peaks. 

 

4.5 Conclusions 

It has been shown that the continuous wavelet transform is a flexible time-frequency 

decomposition tool that can form the basis of useful signal analysis and coding strategies. 

This spectral analysis method makes it possible to estimate the attenuation Q values 

Figure 4.8 the blue line is the transmission wave C. red line is the wave generated by 
the reflector wave A with forward modeling. 
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directly between two events. In comparison to Fourier spectral ratio for Q estimation, the 

CWT time-frequency spectral decomposition appears to provide a more robust and 

effective means of estimating Q. 
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CCHHAAPPTTEERR  55  

Frequency characteristics of seismic reflections in thin layer zone 
 

5.1 Summary 

As a seismic wave propagates, it loses energy due to spherical divergence, scattering, 

intrinsic absorption, and reflection at interfaces where rock properties change. The 

amplitude and frequency responses of the reflected seismic wave are influenced by a 

variety of factors including: geologic structure, layer thickness, lithology, and pore fluid 

properties. When the seismic wave travels back to the surface, it also brings back the 

information related to stratigraphic features, rock property changes, and hydrocarbon 

accumulations.  Each reservoir has its own characteristic seismic frequency response 

because of its unique rock and fluid properties discriminating it from the surrounding 

environment. To understand the underlying physical factors of the low-frequency 

anomaly, we build a set of wave-equation-based synthetic forward models. Analysis 

shows that seismic waves traveling more slowly through a gas zone than the background 

material are the main reason for seismic time-series delay and low-frequency anomaly in 

the thin layer reservoirs. Our explanation has been validated in the analysis of frequency 

anomalies corresponding to gas-bearing sands in the Gulf of Mexico fields. 

5.2 Introduction 
 
In stratigraphic interpretation of seismic data, emphasis has traditionally been placed on 

the amplitude of the reflected wavelet, whereas its frequency behavior has not been 

widely used. This is probably due to the fact that variations in amplitude can be 

straightforwardly related to variations in physical properties such as the velocity and 

density through the definition of the reflection coefficient, and the fact that amplitude 
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analysis is more straightforward than frequency analysis. In contrast, relationships 

between the peak frequency of a reflected wavelet and any properties of a geological 

formation have not yet been firmly established. After many of reservoirs were 

successfully found by utilizing bright spot of amplitude attribute in the past few decades, 

seismic exploration is now facing the prospect of searching in areas that have subtle to no 

seismic amplitude expression of hydrocarbons. During the recent years, seismic 

frequency characters analysis for recognition of hydrocarbon reservoirs has become more 

popular due to the increased difficulty of prospecting  coupled with  the rapidly 

development of spectral decomposition techniques. In fact, low frequency energy 

anomalies associated with reservoirs have been observed for many years. Taner et al. 

(1979) noted the occurrences of low-frequency energy are associated with gas and 

condensate reservoirs.  Castagna et al. (2003) used spectral example to show that some 

gas reservoirs could be identified by low-frequency anomaly. Li (2006) presented a 

method using the continuous wavelet transform to detect thick gas reservoirs. So far, 

there are no proven explanations for the low-frequency phenomenon. Many researchers 

applied attenuation modeling in order to explain low-frequency phenomena. Because 

attenuation acts like a low-pass filter (it suppresses higher frequencies proportionally 

more than lower frequencies), some targets that contain oil or gas have a lower Q value 

than the background and exhibit a zone of anomalous absorption lying in a larger 

background region (Winkler and Nur 1982; Klimentos, 1995; Parra and Hackert, 2002; 

Kumar, et al., 2003). However, it is often difficult to explain low-frequency shadows 

under thin gas reservoirs where there is insufficient travel path through absorbing gas 

reservoir to justify the observed shift of spectral energy from high to low frequencies 
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(Castagna, 2003). If a particular low frequency anomaly was strictly caused by 

attenuation effects, one can compensate the high-frequency components within that zone 

by applying a reverse Q filter.  But, Wang (2007) showed the low-frequency shadow 

zone still exists even after Q compensation.  Goloshubin et al. (2006) used some 

examples of field-data processing to show that oil rich reservoirs exhibit increased 

reflective properties at low frequencies, and that expanding the active seismic bandwidth 

to low frequencies has a strong potential for predicting fluid content. Quintal et al. (2009) 

demonstrated reflection coefficients of gas reservoirs can be significantly increased and 

be frequency dependent in the low-frequency range because of attenuation within the 

reservoir caused by wave-induced flow. Sometimes this low-frequency effect, which 

occurs below the target, is confused with target reflection, which itself may be 

anomalously low or high frequency when containing gas.  

In this chapter, we focus on explaining anomalously low-frequency target reflections; we 

do so by quantifying the various mechanisms that influence local frequency components 

of seismic data in thin layers (one-half-wavelength thickness).  We construct a detailed 

forward model in order to facilitate understanding of the underlying physical factors, 

including local fluid properties, lithologic  properties, and layer thickness variation that 

cause local frequency anomalies. The results of our analysis show that the decreased 

velocity of the seismic signal in gas and oil zones is a more important cause of low 

frequency anomalies than attenuation. this is because seismic signal travels in gas /oil 

zone at low velocities that result in push down of reflectors and cause the delay in time 

series which exhibit low-frequency anomalies in frequency domain.   
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5.3 Tuning and peak frequency  

We defined peak frequency as the frequency which has the maximum amplitude in the 

frequency domain. Lange and Ahnoghrabi (1988) discussed the peak frequency behavior 

of seismic reflections from thin beds as a function of bed thickness and the incidence 

angle of the seismic ray path. By the combination of time-and frequency-domain analyses 

with a limited prior knowledge of the formation environment, the authors demonstrated 

that  pore-fluid type can be determined using mode-converted waves in the frequency 

domain.  Partyka  et al. (1999) used spectral decomposition to demonstrate a heightened 

response of different stratigraphic targets at specific frequencies.  Marfurt and Kirlin 

(2001) used peak frequency to map channels in seismic data.  Partyka (2005) and Puryear 

and Castagna (2008) inverted the amplitude spectrum for layer thicknesses. Hence 

spectral analysis is an important tool for prediction of fluid properties and lithology and 

for detection and thickness estimation of thin layers.  Chung and Lawton (1995) studied 

four different wedge models and showed that peak frequency of the reflectivity is 

inversely proportional to layer thickness, which used a convolutional synthetic wedge 

model without considering attenuation.  In this section we utilize Chung and Lawton’s 

(1995) four wedge models to determine the effect of pure attenuation on the peak 

frequency of thin layer zone have a lower Q value than background. We create a model 

of an attenuating layer inside an elastic medium half-space and quantify the effect of 

attenuation on the peak frequency response of the thin layer. We do not account for 

velocity dispersion linked to attenuation in our model.  
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Consider a wavelet ( )W t  impinging on a three-layer “boxcar” sequence, we generated a 

simple model of a thin layer embedded between two thick layers, with reflection 

coefficients with magnitudes r1, and r2 and travel times t1, and t2, respectively, at the top 

and base of the thin layer.  In general, there are four fundamentally different two-term 

reflectivity series classified in the figure 5.1. We assume that there is no attenuation 

outside the middle layer, while the quality factor Q inside the layer is finite. Accounting 

for attenuation present inside the middle layer, the spectrum of these reflectivity series 

can be expressed as: 

1 22 2
1 2( )

f t
i ft i ftQX f re r e e


 

 
    ,                                                             (5.1) 

where 1 2t t t    is the two-way travel time within the thin layer. The corresponding 

amplitude spectrum is given: 

2
2 2

1 2 1 2( ) 2 cos(2 )
f t f t

Q QR f r r e r r e f t
 


   

       .                                              (5.2) 

The amplitude spectrum of a Ricker wavelet with peak frequency 0f  is: 

 

Figure 5.1 Three-layer “boxcar” model and its four types of the reflectivity series. 

Type  I:    opposite polarity and equal magnitude 
Type  II:   equal polarity and equal magnitude 
Type  III: opposite polarity and unequal magnitude 
Type  IV: equal polarity and unequal magnitude 
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2
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( )
2

0

( ) ( )
f

ff
W f e

f



  .                                                                                              (5.3) 

Hence, an amplitude spectrum of the thin bed response formed by the time domain 

convolution of a Ricker wavelet ( )W f  with a two-term reflectivity series is:  

2

0

2
( )

2 2 2
1 2 1 2

0

( ) ( ) ( ) ( ) 2 cos(2 )
f

f t f t
f Q Qf

A f W f R f e r r e r r e f t
f

 


    

        .          (5.4) 

The peak frequency can be obtained through making 

2

0

2
( )

2 2 2
1 2 1 2

0

( )
( ) 2 cos(2 ) 0

f
f t f t

f Q QdA f d f
e r r e r r e f t

df df f

 


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     
  

 ,                 (5.5) 

Simplifying and using pf to denote peak frequency results in: 

22
2

1 2

2
2 2 2

1 2 1 2
0
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( ( sin(2 ))

( 2 cos(2 )) (1 ( ) )            .

p p
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 
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   

     

                               (5.6) 
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Where pf is the peak frequency sought. The equation 5.6 can be solved by iterated 

method. Synthetic traces for type III wedge model are shown in Figure5.2 (top).  In this 

example, we used a 30Hz Ricker wavelet since this is a typical peak frequency for field 

seismic data.  For each trace generated, the peak frequency of each trace was computed 

as the maximum amplitude of its Fourier frequency spectrum;  the relationship between 

the peak frequency and thickness is plotted in  pink curve with stars in the Figure 5.2 

 

Figure5.2. The top shows synthetic traces for the Type III thin layer model with the 
thickness less than one-half wavelength. 30 Hz Ricker wavelet is used as a source 
wavelet. The bottom shows the corresponding frequency response of the synthetic 
traces in 2D display; the dark red color indicates the high energy location. The pink 
curve with stars shows the peak frequency location of the traces. 
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(bottom).The slope of the curve changes is at a place of the quarter thicknesses.  These 

peak frequencies consistently agree with those values predicted from equations (5.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure5.3 Peak frequency versus thickness for four different wedge models. The 
pink line shows the peak frequency location of the convolution model as a function 
of thickness with Q=15, the black line shows the peak frequency without attenuation 
consideration.   
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The Figure 5.3 shows the plot of the peak frequency versus thickness for four different 

wedge models with attenuation calculated according to equation 5.6.  A low Q value of 

15, which is a relative high attenuation for a reservoir, is used for the quality factor of 

attenuation. The travel time through attenuation layer t  gradually increase as the 

geometric thickness progressions.  t  is the two-way travel time through the reservoir, 

and can be expressed as
2 2h h

t
V f 

   , where h  is the thickness of the layer,  V  is the 

velocity of seismic wave, and f and   are frequency and wavelength, respectively. We 

use the thickness over wavelength as a scale – independent representation of thickness. 

The thickness of layer starts from 0 to 0.5 wavelengths. The reflectivity of r1 and r2 are 

both 0.2 for equal magnitude Type I and Type II, and 0.12 and 0.2 for unequal magnitude 

Type III and Type IV.  The sign of the reflection coefficient is determined by the model 

 

Figure5.4 Peak frequency versus thickness for two different type of reflectivity 
models with the same frequency source wavelet (Ricker wavelet 30Hz). The initial 
peak frequencies are different as the thickness starting from zero. The initial peak 
frequency of type I is 03 / 2 f , which is higher than that of original source wavelet.  
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type, same sign for even reflection coefficient pairs and opposite sign for odd reflection 

coefficient pairs.  Combining the results of Chung and Lawton (1995) and the results 

from equation (5.6), we concluded that the peak frequency of the reflected composite 

wavelet will decrease as the thickness of a thin bed sequence increase. Although we used 

a low Q value (Q=15,a a relative high attenuation) in the model, the results obtained from 

all four wedge models indicate that  the difference between the  attenuation  and non-

attenuation  models is negligible; meaning that attenuation does not play an important 

role in the observed peak frequency shift in  thin layer zone. 

It is worth noting that the Type I and Type II wedge models start at different initial peak 

frequencies near zero thickness even with the same frequency source wavelet. Figure 5.4 

demonstrates that as the thickness of the bed decreases to zero, the peak frequency limit 

will  approach 3 / 2 0f  for type I, and 0f  for type II and type IV, where 0f  is the peak 

frequency of the source Ricker wavelet.  The Type III reflectivity is the only reflectivity 

that exhibits the frequency tuning effect. Frequency tuning occurs when peak frequency 

does not increase or decrease monotonically as a function of thickness.   Figure 5.5 shows 

the peak frequency tuning effect occurs between thickness 0.002  and 0.15d d     at the 

following reflection coefficient pairs: r1= -0.18,-0.12,-0.06,-0.02, and r2=0.2 fixed.  The 

plot shape of peak frequency depends on the ratio between top and bottom reflectivity, 

which is defined as:  

1 2

1 2

( ) ( )

max( ( ), ( ))

abs r abs r
Ratio

abs r abs r


     .                                                                  (5.7) 

In general, the maximum value of peak frequency shifts down as the difference between 

the two reflectivity coefficients increases. Thus, in a geological setting which can be 
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modeled by a single thin bed, if the seismic data shows a frequency tuning effect, the 

setting is a Type III reflectivity sequence. Note the systematic suppression of peak 

frequency value as r1 influence relatively decreases when attenuation Q was taken into 

consideration (pink line).   

 

 

Figure 5.5 Tuning effect of the peak frequency for type III reflectivity model. In 
this example, the r1 values are -0.18,-0.12,-0.06, to -0.02 and the  r2 is fixed at 0.2, 
The maximum value of peak frequency shifts toward thicker beds as the difference 
of the two reflectivity coefficients increases. Note the systematic suppression of 
peak frequency value as r1 influence relatively decreases when Q taken into account 
(pink line). 
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Figure 5.6 is a plot of the results of type III model (r1= -0.18, r2=0.2.) for four different 

input Ricker wavelets with peak frequencies of 18Hz, 24Hz, 30Hz, and 40Hz.  Beyond 

the tuning effect, the peak frequency of the composite reflected wavelet decreases 

monotonically as bed thickness increases; the gradient is nonlinear and is frequency-

dependent. The figure demonstrates that the peak frequency is more sensitive to bed 

thickness at higher frequencies. In processing seismic data representative of thin 

geological formations, geophysicists often attempt to boost the high frequency content of 

the data in order to increase vertical resolution. The results shown in Figure 5.6 indicate 

that, even if the thickness is below resolution, higher frequencies are still preferable 

because they are more sensitive to changes in bed thickness than lower frequencies. 

 

 

 

Figure 5.6 Source frequency effect of peak frequency for four different input Ricker 
wavelets with peak frequencies of 18Hz, 24Hz, 30Hz, and 40Hz.  r1= -0.18, r2=0.2. 
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5.4 The factors that influence local frequency of seismic data 

The final seismic frequency content is a comprehensive result of many factors including 

the source wavelet, the lithologic properties of the layer, the application of seismic data 

processing, etc (Ebrom, 2004). There are many examples which show the presence of low 

frequency spectral anomalies associated with hydrocarbon reservoirs. To understand the 

physical reasons causing this phenomenon, and to utilize it as an attribute of hydrocarbon 

indicator, we may classify the frequency influence factors into two categories: (1) the 

global factors which change the frequency of the whole seismic section,  and (2) the local 

factors that alter the frequency content of the seismic section in the vicinity of a particular 

geological feature. For example, the source wavelet, the seismic data processing 

procedure, and the regional geologic structure are global factors.  Local factors include 

lithologic properties, layer thickness variation, and the presence of abnormal geopressure.  

For the purposes of hydrocarbon detection, our interest is mainly focus on the local 

factors. The formula 5.6 indicates that the peak frequency is negatively proportional to 

the travel time t , i.e. the peak frequency decreases as the travel time increases. Since 

travel time is composed of two parameters, the layer thickness and wave velocity, it 

gives: 

2
( )p

h
f t

V
     ,                                                                                  (5.8) 

Thus the change of peak frequency results from the change of thickness and the change in 

velocity as : 

2

2 2 2
( )p

h h V V h
f

V V

  
      .                                                                    (5.9) 

The ratio of the change of the peak frequency to the peak frequency is given by: 
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2

2 2 2
/p

p

f h V V h h V h

f V V V h

     
     .                                                            (5.10) 

Formula 5.9 and 5.10 indicate several interesting things. First, they imply that the change 

of peak frequency moves toward the same direction with the change of velocity but 

opposite direction with the change of the thickness. Second, the ratio of the change in 

peak frequency to peak frequency is the same order of magnitude as are the ratio of the 

change in velocity to velocity and change in thickness to thickness. The changes in the 

two terms determine the changes in peak frequency.  If we have prior knowledge of either 

velocity or thickness, we can measure the variation of peak frequency to estimate the 

thickness in the reservoir zone, or to predict local lithologic and fluid properties and the 

presence of abnormal geopressure that often result in the velocity variation.  For example, 

given 4D seismic data at the fixed thickness, the peak frequency analysis can be used as 

an important tool for mapping and monitoring of fluid movements and pressure changes 

in petroleum reservoirs during production, thus contributing to improved recovery rates 

and better management of the fields.  Figure 5.7 shows the peak frequency versus 

velocity variation with the various attenuation factors at two fixed thickness conditions 

0.25 dh  and 0.5 dh  , respectively. This is the example of type III reflectivity model, 

30Hz Ricker wavelet as a source wavelet. We decrease wave velocity about 25% from 

2300 m/sec to 1725m/sec. In both conditions, we observe that attenuation factors do not 

significantly affect peak frequency.  With the thickness fixed at 0.25 wavelength, there is 

only 0.6Hz difference of peak frequency between with Q=10 and no attenuation; and a 

0.85Hz difference in peak frequency for the model with thickness fixed at 0.5 

wavelengths. However, a 20 percent of velocity decease can cause approximately 1.5 Hz 
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difference in peak frequency at the thickness 0.25 wavelengths, and a 3.9 Hz change at 

thickness 0.5 wavelengths.  

We use a three-layer wedge model to study the effect of layer thickness, lithology, and 

fluid properties on the local frequency response. A low-impedance layer (e.g., gas sand) 

is sandwiched between two high-impedance layers (e.g. shale). We begin by investigating 

the influence of layer thickness on the frequency response, particularly where the layer 

thickness is less than one-half wavelength.  In this region the reflected events from the 

top layer and the bottom layer will overlap and produce a compound signal whose peak 

frequency depends on the thickness.  After layer thickness increases beyond one-half 

wavelength, the two events can be resolved in two-way travel time. The physical 

parameters of the layers are shown in Figure 5.8 ab.   Here the typical velocity and 

density values were taken from published data for shale and sandstone in the Gulf of 

Figure 5.7 Velocity variation effect for peak frequency of type III reflectivity model 
with the fixed thickness place. The left is wedge thickness fixed at 0.25 wavelengths. 
The right is wedge thickness fixed at 0.5 wavelengths. 
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Mexico. The rock physics parameters are shown in the figure, the porosity of the gas sand 

is 32% with an initial water saturation of 0.1. Gassmann equation is used for fluid 

substitution in this study. The synthetic traces are generated by a plane-wave propagation 

model with attenuation as shown in Figure 5.8c. The source wavelet is a zero-phase 

Ricker wavelet with a peak frequency of 30 Hz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, we fix the layer thickness at one-half wavelength to investigate how the velocity 

variation controlled by the fluid properties affects the peak frequency. Figure 5.9 (left) 

shows the results of varying only the Q value.  We keep everything at the same condition  

 

Figure 5.8 The geology model and its synthetic seismic traces. The red traces indicate 
at one-half wave length thickness location 
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except for changing Q value from 50 to 16.  As expected,  the peak frequency difference 

for the range of Q values is less than 1 Hz, meaning that pure the attenuation effect does 

not significantly affect the peak frequency in the thin layer zone. However, if the fluid 

properties change from fully brine saturated into fully gas saturated, it will yield a 

velocity change of approximately 20% from 2300 to 1800 m/s and a peak frequency 

decrease of about 5Hz.  The lower velocity of the gas sand causes time sag of the base of 

sand reflector that modifies the reflectivity spectrum. This corresponds to a visible 

spectral shift toward low frequencies in the reflected signal. The internal velocity effect is 

more important than the Q value in determining the peak frequency.  This relationship 

also could explain the commonly observed association of abnormally high geo-pressure 

regions with low-frequency anomalies because high pore-pressure reduces the effective 

pressure and results in a decrease in the velocity of the rock.   

Figure 5.10 shows a comparison between the peak frequency shift that occur for a 20% 

thickness change of a brine sand and for a 20% velocity change caused by substituting 

brine for gas at a fixed thickness.  The amplitude response is normalized to unity to 

 

Figure 5.9  Left (a) is the frequency response of the two signals with only changing Q 
values. The right (b) is the frequency response of brine sand velocity Vp=2300 m/s 
and gas sand velocity=1800 m/s.  
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investigate the frequency response. The 20% velocity variation caused by changing the 

pore-fluid content causes a larger frequency shift (4.5Hz) than the 20% thickness 

variation (2Hz). This means that at in situ conditions the gas-containing reservoir may 

display a discernible low frequency anomaly if the thickness of the layer varies laterally 

less than 20%, and also implies that it should be easier to detect and identify an area or 

compartment of a reservoir that has gone through a fluid property change than an area 

that has experience the thickness changes.  

5.5 Conclusions 

Seismic reflection amplitudes are influenced by many parameters such as thickness, 

lithology, porosity, and fluid content. In conclusion, the reservoir thickness and the 

acoustic impedance (velocity and density) are the major factors that control the spectral 

responses of the seismic signal in the thin layer zone. If the reservoir thickness is varied 

less than 20%, velocity is the dominant factor that influences the peak frequency shift.  

 

Figure 5.10 Comparison of the effect of a 20% thickness increase and 20% velocity 
decrease on peak frequency. (Vp from 2300 m/s to 1800m/s). 
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CCHHAAPPTTEERR  66  

AAnnoommaalloouuss  ffrreeqquueennccyy  aass  aa  ddiirreecctt  hhyyddrrooccaarrbboonn  iinnddiiccaattoorr  

 

6.1 Time –frequency analysis and local-frequency anomaly  

With the rapid development and improvement of spectral decomposition, Joint time- 

frequency analysis is today one of the principle tools used to analyze non-stationary data 

such as seismic recordings. In general, seismic data will experience an increasing amount 

of attenuation with depth as a result of the growing number of attenuating layers and 

interfaces it must pass through. Attenuation acts like a low-pass filter; it suppresses 

higher frequencies proportionally more than the lower frequencies. Targets that are oil or 

gas reservoirs usually have lower Q value zones and lower velocities than the background 

does, and thus exhibit zones of anomalous absorption and will delay the travel time in a 

larger background region. Therefore we can find a large frequency shift to low frequency 

direction at these reservoir locations. To extract the frequency anomaly, we have to 

remove the increased attenuation trend.  The most common de-trending process usually 

consists of removing a straight line best fit, yielding a zero-mean residue. Such a trend 

may suit well in a purely linear and stationary world. However, the approach may be 

illogical and physically meaningless for real-world applications such as in seismic data 

analyses. Therefore I derived a formula for the analysis of peak frequency trend based on 

underlying physical mechanism of attenuation, which in turn gives a non-linear and non-

stationary function. In the following steps, I will introduce the trend function which 

corresponding algorithm for finding intrinsically the trend and give a method to remove 

the background trend. Because the de-trended data define a more meaningful variability 
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associated with a particular time scale of the data, the method is validated by application 

to real data.  It should be noted here that the definition of trend and the algorithm for 

detrending in this method are applied to seismic data that are non-stationary and non-

linear processes. By definition, attenuation affects the amplitude spectrum of the 

propagating seismic wavelet and thus the resulting reflection seismogram as

0( ) ( )
f

t
QA f A f e



 , here 0( )A f is source wavelet. If we take Ricker wavelet ( )W f  with 

peak frequency 0f  as a source wavelet,  the amplitude of spectral of seismic wave is: 

2

0

( )
2

0

( ) ( ). ( ) .
ff f

t t
fQ Qf

A f W f e e e
f

  
    .                                                            (6.1) 

 To find the peak frequency location, making 

 
2

0

( )
2

0

( ( ))
(( ) . ) 0

f f
t

f Qd A f d f
e e

df df f

 
     .                                                              (6.2) 

 
Expanding and simplifying it, it gives: 
 

2
2 20

0( ) ( ) 0
2

f
t

Q tf
W f e f f f

Q

 
    .                                                                     (6.3) 

 Since ( ) 0
f

t
QW f e



  , thus   

  
2

2 20
0( ) 0

2

tf
f f f

Q


      .                                                                        (6.4) 

 Hence solving this equation and keep the real solution, it gives the peak frequency 

2
20 0

0 1 ( )
4 4p

f t f t
f f

Q Q

 
      .                                                                      (6.5)  
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 This formula shows the relationship of peak frequency and travel time. We can estimate 

a general peak frequency trend line by fitting this formula along with time direction. 

Figure 6.1 (left) demonstrates two theoretical curves of peak frequency vs. travel time for 

initial peak frequency at 50 Hz.  Figure 6.1 (right) is a time-frequency spectral of a real 

seismic trace. The red line is a fitting curve of a peak frequency trend. The difference 

between the trend fit and the local variation is ( ) ( ) ( )Af t Lf t Tf t  , where ( )Lf t and 

( )Tf t  are the frequency values from local peak frequency location and frequency trend fit 

location respectively. Thus large ( )Af t values indicate areas of anomalous lower 

frequency,  i.e. zones of anomalous velocity and high absorption. To obtain a true trend 

Figure 6.1 the left figure plots two theoretical curves of peak frequency vs. travel 
time for initial peak frequency at 50 Hz, pink line is attenuation quality factor 150, 
the blue line is Q=200. The right is a time frequency spectral of a real seismic trace. 
The red line is a fitting curve of a peak frequency trend. 
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line which can be used to represent the global background, we have to select a location 

where there is no frequency anomaly or to use an averaged trend by

1,...

1
( ) ( , )

x n

Tf t Tf x t
n 

  , where ( , )Tf x t  is the frequency trend at the x receiver. This 

method to extract anomalous frequency values is not affected by the seismic data that 

have been previously spectrally balanced because spectral balancing changes only the 

amplitude spectral of sub-bands which does not shift peak frequency location. We are 

measuring only the trend of the peak frequencies, not the phase, thus spectral balanced 

data will be acceptable for this technique.  

I now summarize the procedure in the following steps. 

1) Calculate time-frequency spectral decomposition for each seismic trace after 

spectral balancing. 

2) At each seismic trace compute the peak frequency location at each time location

( , )pF x t . 

3) Get the local trend line ( , )Tf x t  by using the formula (6.5) to fit ( , )pF x t  along 

with time direction. 

4) Get the global trend line ( )Tf t  by using the formula 
1,...

1
( ) ( , )

x n

Tf t Tf x t
n 

   to 

average the local trends.
 
 

5) Subtract the global trend from the local frequency location by

( , ) ( , ) ( )Af x t Lf x t Tf t   

6) Apply 2D or 3D low-pass filter to eliminate the outliers.  

To make the resultant anomalous values more clearly differentiable, one can also use the 
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formula 2 2( , ) ( , ) ( )VarAf x t Lf x t Tf t   in step 5, where negative-valued zones represent 

higher than normal frequency trend and positive value zones represent the lower than 

normal trend.  

6.2 Field data examples  

Time-frequency analysis is used to directly compute seismic frequency attributes from 

field data that include the KingKong reservoir and a nearby fizz gas well (Lisa Anne). I 

followed the method described in Chapter 2. I first extracted an orthogonal wavelet from 

a seismic signal near the KingKong well, and then used this orthogonal wavelet as a 

mother wavelet to apply the hybrid wavelet transform based on the methods described in 

Chapter 3 for decomposing all fields of 3D seismic cube data into a time-frequency 

domain. Next, I followed the procedures described in the preceding section to remove the 

background trend and extract the frequency anomaly. Figure 6.2 shows the input 3D 

seismic volume.  KingKong reservoir is a gas reservoir characterized by strong amplitude 

anomalies (O’Brien, 2004). Lisa Anne has a similar set of amplitude anomalies within the 

same stratigraphic interval on the southeastern flank of the basin (Figure 6.3). However, 

no commercial hydrocarbons were found in the Lisa Anne location; it was a fizz 

reservoir. The sand quality at KingKong and Lisa Anne is excellent, with porosities of 

32-35%, and target sand thickness of approximately 26 meters.  Figure 6.4 shows a 

seismic profile line AB that crosses the KingKong and Lisa Anne. The marked zones 

around time 4000 ms are the target sand location and associated with bright spots. Figure 

6.5 demonstrates the time-frequency gathers of seismic traces at KingKong and Lisa 

Anne respectively. The white line is a curve fit of the peak frequency background trend. 
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Figure 6.2  3D seismic data volume of KingKong and Lisa Anne reservoir. 
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Figure 6.3  RMS amplitude of a 2D map of target sand horizon with a window around the 
horizon +/- 25 ms. Note that both KingKong and Lisa Anne exhibit  the amplitude anomalies. 
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Figure 6.4 A seismic profile line AB that crosses the wells KingKong and Lisa Anne. 
The blue line marks trace 93 where no frequency anomaly appears. 

 

Figure 6.5 Time-frequency gathers of seismic traces. (a) is the time-frequency gather of 
the seismic trace located at the  KingKong well. (b) is the time-frequency gather of the 
seismic trace 93(blue line Figure 6.4). (c) is the time-frequency gather of the seismic 
trace at the  Lisa Anne well. The white line is a curve fit of the peak frequency 
background trend. Note that large low-frequency anomalies appear at the target sand 
location. 
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The differences between the local peak frequency and the background trend were marked 

at the target sand locations; it turns out the significant low-frequency anomalies appeared 

at these positions.  The peak frequencies at target sands are about 12 Hz and 13.5 Hz 

respectively, and the maximum peak frequency shift down from the background trend is 

approximately -5.5 Hz at the KingKong location.  Figure 6.6 shows frequency anomaly 

profile line AB after removing the background peak frequency trend. The orange colors 

represent large negative peak frequency anomalies, which spatially coincide with the 

target sands.  Note that other strong amplitude events do not exhibit the same low 

frequency anomaly response observed near the two well locations. Figure 6.7 is a 2D 

anomaly map that was generated by the summation of  negative peak frequency 

anomalies along the target sand with a window from target  50 ms. Comparing  Figure 

 

Figure 6.6 low frequency anomalies profile of AB line. The orange color represents large 
negative peak frequency anomalies. 
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6.7 with the Figure 6.3, the gas-bearing sand was nicely outlined in  Figure6.7and the  gas 

contain was also indicated by the magnitude of the negative frequency anomaly.  A 

strong negative frequency anomaly response appears at KingKong well area associated 

with gas-bearing sand zone and the relative small and weak response was shown in Lisa 

Anne well area in which fizz containing sand layer is located.  Figure 6.8 shows low- 

frequency anomaly attributes were distributed in 3D seismic volume. The yellow-orange 

colors that represent low-frequency anomaly display the distribution of producing gas 

sand locations.  It can be seen that no other place has large low-frequency anomalies 

except the area near round two well locations. This implies that the low-frequency 

anomaly attribute effectively isolate the potential target zone from its surrounding 

environments.   It can provide a detailed and accurate estimate of distribution of reservoir  

 

 

 

 

 

 

 

 

 

 

Figure 6.7  Sum of negative frequency anomalies of 2D map of target sand horizon with 
window at +/- 50 ms. 
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Figure 6.8 the 3D volume of frequency anomaly attributes. 
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sands in the zone of interest.  Next we will investigate the reason for the low-frequency 

anomalies observed at KingKong reservoir.  Figure 6.10 shows the KingKong well log 

and the associated synthetic trace. The dominant frequency of the seismic data is 

approximately 25 Hz; the sonic log indicates that the shale velocity of the top layer is 

approximately 2590 m/sec and the gas-sand velocity is around 1846 m/sec. The thickness 

of the target sand is 26 meters, which is approximately one- half wavelength, if we use 

the formula V f   to estimate the wavelength of seismic wave propagation, taking 

V=2600 m/s, and f =25Hz, for two ways travel time.   From the previous analysis in the 

section 5.3, we know that attenuation factor (Q) alone cannot cause such a large negative 

frequency shift (less than 1Hz) due to the insufficient distance traveled through the gas 

sand. Instead, the low velocity through the gas zone causes the wave delay. Thus, the low 

velocity is the primary reason for the low-frequency anomalies. Also, from inspection of 

Figure 6.10, two-way travel times t  from the top to the bottom of gas-sand layer is 

 

Figure 6.9 Amplitude spectrums of the seismic data. 
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approximately 80 ms, resulting in a center frequency 1/ 0.08 12.5cf    Hz for this 

event.  

 

 

 

 

 

 

 

 

Figure 6.11 shows a series of common frequency profiles. The target sand horizon near 

KingKong well does not exhibits energy at 33 Hz, but exhibit a strong anomaly not 

present in any other layers at 12 Hz. Moreover, Figure 6.12 shows that the boundaries of 

12 Hz energy anomaly nicely agree with the gas-water contact interface at which the 

wavelet phase reversal occurs,  which gives insights into how the geology and geophysics 

and, in some cases, the rock properties of the reservoir are linked.  Figure 6.13 

demonstrates the 12 Hz frequency map of RMS energy of the target sand with a window 

horizon +/- 35 ms.  The gas-containing sand was very accurately outlined at this 

frequency and the gas contain quality was also indicated by magnitude of energy 

spectrum.  

Figure 6.10 Density log, sonic log, synthetic trace, correlation trace and seismic 
section at KingKong well. 
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Figure 6.11 The results of the three common frequency sections (bottom) by the 
hybrid wavelet transform with Inline 5529 seismic profile. 

 

Figure 6.12   Local seismic trace profile (wiggle) and 12 Hz common frequency 
profile (colored background) near the KingKong well. Note that the arrow points the 
gas water contact boundary where the phase reversal occurs. 
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These imply that the 12 Hz peak frequency can be used to detect and characterize the 

reservoir sands in this area.  

6.3 Conclusions  

In this chapter, we discussed the phenomenon of low-frequency energy anomalies 

associated with reservoir zones. The results of numerical forward modeling in the thin 

layer zone show that when seismic waves travel slower through gas than through the 

background material, their slower velocity results in a signal time delay.  This signal time 

Figure 6.13 The 12 Hz frequency map of RMS energy of the target sand with a 
window horizon +/- 35 ms.  The gas-containing sand was very accurately outlined 
at this frequency and the quality of gas-containing sand was also indicated by 
magnitude of energy spectrum. 
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delay is a major cause of the low frequency anomalies. A low attenuation factor Q is 

insufficient to produce large low-frequency anomalies in thin layer zones (one-half 

wavelength thickness or less).  

Traditional methods to detect hydrocarbons that are based on the amplitudes of seismic 

reflections are subject to variation of many parameters such as thickness, lithology, 

porosity, and fluid content. Additionally, gas-bearing formations are not always 

characterized by very high-amplitude bright spots on the seismic data, so we cannot 

easily draw conclusions about the existence of hydrocarbons even if bright spots were 

present. In this thesis, we have demonstrated through an example of real data that the 

low-frequency anomaly attribute might provide a detailed and accurate estimate of the 

distribution of reservoir sands in the zone of interest in order to resolve such ambiguities. 

This suggests that studying low-frequency anomaly attributes can enhance the 

understanding of the reservoir by providing a clearer picture of the distribution, volume, 

and connectivity of the hydrocarbon-bearing facies of the reservoir. The low frequency 

anomaly attributes can also be a quantitative suite that aids the interpreter by defining the 

local geometry of the events. For example, these attributes could potentially be utilized 

when analyzing the stratigraphic elements in a sequence stratigraphic analysis. Moreover, 

since unique rock and fluid properties exist in the surrounding environment, each 

reservoir has its own characteristic frequency response to the seismic signal. Local 

frequency components can then be used to recognize hydrocarbon reservoirs.  
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7.1 Conclusions 

There are many examples that show the presence of low-frequency spectral anomalies 

highly correlated to the location of hydrocarbon reservoirs. In order to understand the 

physical causes underlying this phenomenon and utilize them as a hydrocarbon indicator 

attributes. In this dissertation, I built a set of wave-equation-based synthetic models with 

thin layer zones in order to evaluate the contributions of various factors to local 

frequency anomalies. The result of our analysis shows that the fact that seismic waves 

travel more slowly through gas zones than the background material is a primary cause of 

seismic time series delays and low-frequency anomalies in the thin layer reservoirs. Our 

explanation has been validated by the analysis of frequency anomalies corresponding to 

gas-bearing sands in the Gulf of Mexico fields.  I used spectral decomposition to analyze 

the signal in the time-frequency domain. In order to maintain optimal resolution in the 

two domains, I designed an orthonormal wavelet that is optimized according to a desired 

signal in the least-squares sense. I used this wavelet to develop a hybrid spectral 

decomposition method that combines continuous wavelet transform with a non-linear 

operator. The seismic signal is a complicated signal having low amplitudes, making it 

difficult to analyze. However, the signal properties of seismic data can be enhanced by 

the use of matched wavelets.  This new spectral decomposition tool can significantly 

improve frequency resolution and enhance local frequency components.  Each reservoir 

has a characteristic frequency response to seismic energy determined by the unique rock 

and fluid properties in the surrounding environment. The tool can be used to directly 
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seismic frequency attributes from seismic data and identify frequency anomalies caused 

by gas or fluid energy absorption. Finally, the method is applied to gas-bearing sands in 

field data.   

7.2 Main novelties and achievements of this dissertation 

1. I designed an orthonormal wavelet, which is optimized to a desired signal in the 

least-squares sense. For signal detection applications, the decomposition of a 

signal in the presence of noise using a wavelet matched to the signal produces a 

sharper or higher resolution in time-frequency space as compared to standard 

unmatched wavelets. 

2.  I developed a hybrid spectral decomposition method which combines the 

continuous wavelet transform (CWT) with a non-linear operator. This spectral 

decomposition method can significantly improve frequency resolution and 

enhance local frequency components. Compared to other spectral decomposition 

methods such as match pursuit, it provides an integrated, versatile, and efficient 

approach to analyzing non-stationary seismic signals. I show several examples of 

application to seismic attribute extraction and reservoir feature detection. 

3. I used continuous wavelet transforms to estimate attenuation. I have found that 

spectral ratios obtained using continuous wavelet transforms are more accurate 

than those obtained using the Fourier transform, less subject to windowing 

problems, and more robust in the presence of noise, thereby resulting in a more 

robust and effective means of estimating Q. 

4. I derived an analytic formula for investigating peak frequency characteristics of 

seismic reflections with attenuation in the thin layer zone. I discussed four types 
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of different wedge models to show that peak frequency gradually decreases as 

layer thickness increases. The results of the four wedge models all indicate that 

pure attenuation does not cause a significant peak frequency decrease in the thin 

layer zone, and that low velocity is a dominant factor causing the peak frequency 

decline. 

5. To extract the frequency anomaly, I derived a formula for the analysis of the peak 

frequency trend based on the underlying physical mechanism of attenuation, 

which in turn yields a non-linear and non-stationary function. I also present a 

corollary algorithm for intrinsically finding the trend and implementing the de-

trending operation. This method for extracting low-frequency anomaly attributes 

provides great advantages in isolating the potential target zone from its 

surrounding environments. This methodology is illustrated for hydrocarbon- 

bearing sands by the application of the KingKong field data.   
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