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ABSTRACT 
 
 

In this dissertation, I develop a new spectral decomposition method and apply it to 

mapping stratigraphy and hydrocarbons. This new spectral decomposition method 

combines matching pursuit concepts with a least-squares solution, providing an accurate 

time-frequency decomposition. The output spectral attributes include single frequency, 

peak frequency, peak amplitude, and peak phase volumes. Based on these spectral 

attributes, I can generate the composite volume of either peak frequency or phase with 

peak amplitude. I also show how I can plot spectral attributes which include a newly 

developed Red-Green-Blue display method.  

 

I demonstrate the value of spectral decomposition through these applications. 

First I use spectral attributes to predict thin bed thickness of a Pennsylvanian age 

limestone verified by equations and a synthetic model. Next I show how to use composite 

volume of peak frequency, peak amplitude and coherence to detect channels in a Tertiary 

Gulf of Mexico as well as in a Paleozoic West Texas survey. Coherence can detect the 

lateral variation, while peak frequency can show the vertical thickness variation. Finally, 

I show how the new Red-Green-Blue display technique, which is based on three different 

basis functions, can be used to detect low frequency zones.  
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CHAPTER 1 

SPECTRAL DECOMPOSITION USING PROJECTION METHODS 

 

1.1 INTRODUCTION 

  

 Although the short window discrete Fourier transform (SWDFT) has been used by 

seismic processors in time-variant spectral balancing since the advent of digital 

processing, Morlet et al. (1982) appears to be the first to generate such spectra for 

purposes of seismic interpretation. Morlet et al.’s (1982) SWDFT was based on 

Gaussian-tapered sines and cosines (now called Morlet wavelets) that are often a good 

approximation to real seismic wavelets. Partyka et al. (1999) who used tapered 

rectangular windowed sines and cosine wavelets were the first to demonstrate the value 

of spectral decomposition in interpreting 3D seismic data volumes. Marfurt and Kirlin 

(2001) used the short window discrete Fourier transforms (SWDFT) to directly 

decompose a seismic signal into its Fourier components. Sinha et al. (2003, 2005) used 

variable window Morlet wavelets as their wavelet basis, generating a suite of frequency 

sections that can be used to study anomalous tuning and attenuation.  

 

 Stockwell et al. (1996) introduced the S-transform which is very similar to Morlet et 

al.’s technique. Taner and Treitel (2004) showed the harmonic attributes based on Gabor-
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Morlet wavelet theory. The only difference in spectral decomposition between S-

transform and Morlet et al.’s technique is that the S-transform scales the output by the 

mean frequency. The S-transform is a good tool to analyze local time-frequency 

distribution using a frequency dependent window. The advantage of the S-transform over 

the short window discrete Fourier transform is that the low frequency analysis uses a 

longer time window while the high frequency analysis uses a shorter time window. Matos 

et al. (2005) examined the maximum peak frequencies computed using the S-transform 

for reservoir characterization. Odebeatu et al. (2006) applied the S-transform to detect 

gas reservoir anomalies. In this chapter, I will introduce the theoretical background of 

spectral decomposition using projection methods, which include both the short window 

discrete Fourier transform (SWDFT) and the S-transform.  

 

 I begin this chapter by reviewing the implementation of the most popular spectral 

decomposition methods currently in use, the SWDFT. I then introduce the S-transform 

and discuss the difference between the SWDFT and the S-transform. Next, I use a 

synthetic example to compare the different decomposed spectral attributes including the 

amplitude and phase spectra.  Finally, I decompose a seismic line extracted from a 3-D 

seismic survey acquired over the Louisiana Shelf, Gulf of Mexico using the S-transform 

and examine different spectral components.  
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1.2 THEORY OF SPECTRAL DECOMPOSITION USING PROJECTION 

METHODS 

 

1.2.1 Short Window Discrete Fourier Transform (Transform using Constant Size 

Windows) 

 

Conventional spectral decomposition is usually performed using the short window 

discrete Fourier transform (SWDFT). Partyka et al. (1999) proposed the application of 

the SWDFT to generate common frequency cubes. They first selected a data analysis 

window containing stratigraphic features of interest. The next step is to transform the 

time-domain data to frequency domain using the SWDFT. After spectral balancing 

(Chapter 2), they viewed the decomposed common frequency horizon slices to identify 

textures and geological patterns.  

 

 The equation for the short window discrete Fourier transform can be written as 

(Mallat, 1999)  

dtetWtufU ftj
SWDFT ∫ −−= πτ

π
τ 2)()(

2
1),(  ,                                                                 (1-1) 

where )(tu  is the time domain seismic data, τ is the center time of the window 

function )( τ−tW , f is the frequency, and ),( fU SWDFT τ  is the time-frequency function. 

The defined window )( τ−tW  can be either a tapered or untapered rectangular window 

(boxcar), Gaussian window, Hamming window, or Hanning window (Mallat, 1999).  
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Figure 1.1 shows three different windows include both tapered and untapered rectangular 

windows, and a Gaussian window. 

 

 Partyka et al. (1999) use a tapered rectangular window, while Mallat (1999) uses a 

Gaussian window of the form 

22 )()( τστ −−=− tetW  ,                                                                                            (1-2) 

where σ is a constant value controlling the window size, with larger values of σ resulting 

in smaller time windows.  In Figure 1.2 I plot )2cos(2
)( 22

fte
t

π
στ −−

and the corresponding 

spectra for three different carrier frequencies. Note that the amplitude spectra of the three 

Morlet wavelets have the same window size and the same bandwidth. 

 

 

 
(a)                                        (b)                                        (c) 

Figure 1.1 Three alternative windows commonly used in the short window discrete 
Fourier transform: (a) an untapered rectangular window, (b) a tapered rectangular 

window, and (c) a Gaussian window.  
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Figure 1.2 Cosine Morlet wavelets and corresponding amplitude spectra (SWDFT).  

Morlet wavelet of mean frequency at (a) 10Hz (blue), (b) 20Hz (green), and (c) 50Hz 
(red). (d) The corresponding amplitude spectra for (a), (b) and (c). 

 

1.2.2 The S-transform (Transform using Variable Size Windows) 

 

 Morlet et al. (1982) cross-correlated both cosine and sine (or complex) Morlet 

wavelets MW , with the input seismic trace )(tu . The instantaneous amplitude spectrum of 

the seismic trace is then the modulus of the complex cross-correlation coefficients. The 

Morlet wavelet decomposition is then given by 

dtWtufU MM ⋅= ∫ )(),(τ   ,                                                                                           (1-3) 

where 

ee ftift
MW πτ 22ln22)( −−−= ,                                                                                                (1-4) 

MW is the complex Morlet wavelet, and ),( fU M τ is the complex time-frequency 

spectrum.  
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 Stockwell et al. (1996) introduced the S-transform which differs from the Gaussian 

tapered SWDFT given in equation 1-2 in that the amplitude of the wavelet is a function 

of the carrier frequency  

dt
f

tufU ee ftift

S
π

τ

π
τ 2

2

22)(

2
)(),( −

−−

∫=   ,                                                       (1-5) 

where )(tu  is the input seismic trace, f is the frequency, τ  is the analysis time point, t  

is the time, and ),( fU S τ  is the complex time-frequency spectrum. Comparing equation 

1-3 and equation 1-5, we note that the S-transform is quite similar to Morlet’s 

decomposition technique. The only difference between S-transform and Morlet wavelet 

decomposition is that the S-transform time-frequency function is scaled by the carrier 

frequency f .  

 

 The continuous wavelet transform commonly used in data compression decomposes 

the signal from the time domain to the time-scale domain using orthogonal wavelets that 

vary in length and frequency by a factor of two. In contrast, the S-transform decomposes 

the signal from the time domain to the time-frequency domain using non-orthogonal 

variable size Morlet wavelets (Mallat, 1999; Stockwell, 1996; Sinha, et al., 2005). While 

computationally more intensive than the orthogonal wavelet transform, the non-

orthogonal S-transform provides added time and frequency resolution valuable for 

interpretation. Stockwell et al. (1996) interpreted the S-transform as a combination of 

continuous wavelet transform and the short window discrete Fourier transform. The 

difference between the S-transform and the SWDFT is that the Gaussian window is a 
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function of time and frequency for the S-transform, while the Gaussian window is only a 

function of time for the SWDFT.  

 

 Figure 1.3 shows three different window size Morlet wavelets and their 

corresponding amplitude spectra.  The Morlet wavelet with a mean frequency at 10 Hz 

has a longer window in the time domain, resulting in a narrower bandwidth in the 

frequency domain. In contrast, the Morlet wavelet with a mean frequency at 50 Hz has a 

shorter window in the time domain, resulting in a wider bandwidth in the frequency 

domain.  In general, the S-transform gives better low frequency resolution and reduced 

high frequency resolution than the corresponding SWDFT.  Comparing Figures 1.2 and 

1.3, we can easily see that the S-transform applies different Gaussian windows or 

different size Morlet wavelets to calculate the time-frequency distribution, while the 

SWDFT uses the same window size to do spectral decomposition. 

 

 
Figure 1.3 Cosine Morlet wavelets and corresponding amplitude spectra (S-transform). 
Morlet wavelet of mean frequency at (a) 10Hz (blue),  (b) 20Hz (green), and (c) 50Hz 

(red). (d) The corresponding amplitude spectra for (a), (b) and (c). 
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According to the Heisenberg uncertainty principle, we can not obtain both good 

temporal resolution and frequency resolution simultaneously (Mallat, 1999; Morlet, et al. 

1982). In other words, if we wish to obtain a good frequency resolution in our time-

frequency distribution, we will need to sacrifice some temporal resolution.  

 

 I calculate the S-transform using the following four steps: 

1) Pre-compute a dictionary of cosine (zero-phase) and sine (90 degree phase) Morlet 

wavelets for the range of frequencies of interest, thereby forming complex wavelets 

2) Read in the seismic trace, 

3) At each time sample, cross-correlate a time-shifted version of each complex wavelet in 

the dictionary with the seismic trace to generate complex cross-correlation coefficients, 

4) Calculate the modulus of the above complex coefficients as the amplitude spectrum, 

and calculate the phase angle of the complex coefficients as the phase spectrum. For 

each time-frequency spectrum point, the time location is the sample of the seismic 

trace, while the frequency is the mean frequency of wavelet from the dictionary. 

 

 The steps above are illustrated in Figure 1.4. In Figure 1.4b only nine complex 

Morlet wavelets are displayed to explain the decomposition flow. In practice 80-100 

wavelets are used. Figure 1.4c is the instantaneous amplitude spectrum at time 1.0 s of 

input seismic trace (Figure 1.4a, blue dashed line). If I repeat the same steps for other 

time locations, I will obtain the amplitude spectrum of whole seismic trace. The time-

frequency distribution of the whole seismic trace is shown in Figure 1.5.  



 

 9

 Fortran90 program spec_proj, computes spectral decomposition using both the 

SWDFT and the S-transform algorithms. I provide the UNIX ‘man page’ of this 

algorithm as Appendix A. 

 

 

 
Figure 1.4 The time-frequency decomposition of the S-transform. (a) Input seismic trace, 
(b) cosine and sine Morlet wavelets from 10 Hz to 90 Hz ( the cosine Morlet wavelet is 
indicated by the black solid line, the sine Morlet wavelet is indicated by the red dotted 

line),  and (c) the instantaneous amplitude spectrum at time 1.0 s. 
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Figure 1.5 The seismic trace (from Figure 1.4a) and its time-frequency distribution using 

the S-transform. 
 
 

1.3 SPECTRAL DECOMPOSITION EXAMPLES 

 

 I use the synthetic traces in Figure 1.6a to compare the results of the S-transform 

and SWDFT spectral decomposition algorithms. The synthetic traces in Figure 1.6a are 

composed of different phase angle Morlet wavelets with mean frequencies of 10 Hz, 30 

Hz and 50 Hz. The corresponding amplitude spectrum and phase angle of the S-transform 

decomposition results are shown in Figures 1.6b and 1.6c. Figures 1.7 and 1.8 show the 

decomposed amplitude spectrum and phase spectrum using the SWDFT of fixed 

Gaussian windows 20=σ and 30=σ  (described in equation 1-2), respectively. 

Comparing Figures 1.7 and 1.8, I note that the different Gaussian window sizes used in 

SWDFT result in different spectral attributes. The selected window size of SWDFT will 

depend on the application of spectral decomposition. If you want to interpret the low 

frequency attributes of seismic data, a longer window size can be used in the SWDFT. If 
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you are interested in the high frequency contents of a certain reservoir zone, a shorter 

window size should be selected for the SWDFT. Comparing Figures 1.6 and 1.7, I note 

that the time-frequency distribution of the S-transform has better frequency resolution at 

lower frequencies than the SWDFT.   

 

 Figure 1.9a shows a seismic line extracted from a 3-D seismic survey acquired over 

West Texas, USA. In Figures 1.9b, 1.9c and 1.9d I display single frequency sections 

generated at 10 Hz, 30 Hz, and 50 Hz using the S-transform. These single frequency 

sections will serve as input to the low frequency detection by a Red-Green-Blue plot 

which I will discuss in Chapters 3 and 6.  

 

 
Figure 1.6 Spectral decomposition using the S-transform. (a) Synthetic trace; (b) 

amplitude spectrum; (c) phase spectrum.  
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Figure 1.7 Spectral decomposition using SWDFT with fixed Gaussian window ( 20=σ ). 

(a) Synthetic trace; (b) amplitude spectrum; (c) phase spectrum. 
 

 
Figure 1.8 Spectral decomposition using SWDFT with fixed Gaussian window ( 30=σ ). 

(a) Synthetic trace; (b) amplitude spectrum; (c) phase spectrum. 
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Figure 1.9 Seismic section and single frequency sections. (a) Seismic section. Single 
frequency section of (b) 10 Hz, (c) 30 Hz, and (d) 50 Hz. (Seismic data courtesy of 

Burlington Resources) 
 

1.4 SUMMARY 

  

  Spectral decomposition using projection techniques including the short window 

discrete Fourier transform and the S-transform is both computationally efficient and easy 

to implement. Since these are projection rather than least-squares techniques, the 

resulting details of the two decompositions will not only be different from each other, but 

will also depend on the size of the window length used. The S-transform provides 

improved spectral resolution by using variable window length as a function of frequency. 

A synthetic example demonstrates that both the SWDFT and the S-transform can be used 

to estimate the local time-frequency variation.  
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CHAPTER 2 

SPECTRAL DECOMPOSITION USING LEAST-SQUARES 

 

2.1 INTRODUCTION 

 

There are two general families of spectral decomposition algorithms – those that use 

a simple projection method, and those that use a more computationally intensive least-

squares approach. Even with careful tapering, spectral decomposition using the SWDFT 

has window effects (Cohen, 1995). For this reason, Castagna et al. (2003) looked at 

alternative time-frequency decomposition methods based on wavelet transforms to 

compute what is commonly called instantaneous spectral attributes (ISA). Since most of 

the details of this approach were not published in the open literature, and since knowing 

the details and approximations of algorithm implementation was important to my 

interpretational objectives, I implemented what I thought a matching pursuit spectral 

decomposition algorithm should be (Mallat and Zhang, 1993), first using Ricker wavelets 

(Liu et al., 2004) followed later by using Morlet wavelets (Liu and Marfurt, 2005).   

 

The objective of this chapter is to describe this new spectral decomposition which 

combines the benefits of both matching pursuit and least-squares concept. I first 

introduce the theory of this new spectral decomposition. Then I discuss how I have 

turned this theory into a computationally-efficient algorithm. Next I use both synthetic 
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examples and field examples to demonstrate the decomposition results. Finally, I 

introduce spectral balancing using the average amplitude spectrum for the seismic survey. 

 

2.2 DECOMPOSITION THEORY 

 

I begin the analysis by assuming that each seismic time trace, u(t), is band-limited 

and can be represented by a linear combination of either Ricker or Morlet wavelets 

Noisefttwatu
j

jjjj +−⋅= ∑ ),,()( ϕ ,                                                                          (2-1) 

where aj, tj, fj and ϕj represent the amplitude, center time, peak frequency, and phase of 

the jth wavelet w , respectively.  I exploit complex attribute analysis and estimate the 

center time of each candidate wavelet by peaks of amplitude in the instantaneous 

envelope. The average frequency, favg, of the wavelet is estimated by the instantaneous 

frequency at the envelope peak [called the response frequency by Bodine (1984) and the 

wavelet frequency by Taner (2000).]   The peak frequency, fj, shown in equation 2-1, can 

be computed for the Ricker wavelet by 

avgj ff )2/( π=   ,                                                                                                        (2-2) 

and for the Morlet wavelet by 

avgj ff =  .                                                                                                                   (2-3) 

The temporal expression of the Ricker wavelet is given by (Sheriff, 2002) 

)exp()21(),( 222222
jjjR fttfftw ππ −−=  ,                                                                      (2-4) 

while its spectrum is given by 
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The temporal expression of the Morlet wavelet is given by (Morlet, et al., 1982) 

)2exp()/2lnexp(),( 22 tfikftftw jjjM π⋅⋅−=  ,                                                               (2-6) 

while its spectrum is given by: 

]
2ln
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exp[2ln/),( 2

22

j

j

j
jM f

ff
k

f
ffw

⋅

−
⋅−⋅=
ππ  .                                                           (2-7) 

where fj is the peak frequency, and k  is a constant value that controls the wavelet breadth. 

If I use smaller values of k , I will include more cycles in the Morlet wavelet. In our 

process, I choose k=0.5 (such that the cosine Morlet wavelet has three lobes). 

 

To efficiently solve for both the amplitude and phase of each wavelet, I use the 

Hilbert transform, and form both an analytic data trace 

)()()( tiututU H+= ,                                                                           (2-8) 

and a table of complex wavelets 

),(),(),( j
H

jj ftiwftwftW +=  ,                                                                                 (2-9) 

where w are symmetric cosine wavelets and wH are antisymmetric sine wavelets. Figures 

2.1a and 2.2a show both zero-phase and 90 degree phase Ricker wavelets and Morlet 

wavelets, respectively. Figures 2.1b and 2.2b display their corresponding amplitude 

spectra with a peak frequency at 30 Hz.  
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Before I decompose the seismic trace, I precompute a wavelet dictionary which is 

composed of zero-phase wavelets and 90 degree phase wavelets with different peak 

frequencies (Figure 2.3).  The zero-phase and 90 degree phase Ricker wavelets with 

different peak frequencies are shown in Figures 2.3a and 2.3b. The zero-phase and 90 

degree phase Morlet wavelets with different peak frequencies are shown in Figures 2.3c 

and 2.3d. Combining the zero-phase and 90 degree phase wavelets, I can build the 

complex wavelet dictionary, )fW(t, j using equation 2-9.  

   
                                      (a)                                                              (b) 
Figure 2.1 30 Hz Ricker wavelets and corresponding amplitude spectrum. (a) Zero phase 

Ricker wavelet (black) and 90 degree phase Ricker wavelet (red). (b) Amplitude 
spectrum of (a). 

 

 
                                      (a)                                                              (b) 
Figure 2.2 30 Hz Morlet wavelets and corresponding amplitude spectrum. (a) Zero phase 

Morlet wavelet (black) and 90 degree phase Morlet wavelet (red). (b) Amplitude 
spectrum of (a). 
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The analytic analogue of equation 2-1 then becomes  

NoisefttWAtU
j

jjj +−⋅= ∑ ),()( ,                             (2-10) 

where by writing complex amplitude jA  as ji
j ea ϕ , the amplitude aj in equation 2-1 is 

represented by the magnitude of Aj, and the phase ϕj is represented by the phase of Aj. 

 
                                      (a)                                                              (b) 

 
                                      (c)                                                              (d) 
Figure 2.3 The Ricker wavelet dictionary is composed by (a) zero-phase Ricker wavelets 
and (b) 90 degree phase Ricker wavelets. The Morlet wavelet dictionary is composed by 
(c) zero-phase Morlet wavelets and (d) 90 degree phase Morlet wavelets. In practice, the 

wavelets will be sampled at 0.1 Hz rather than the 5.0 Hz increment shown here.  
 

My objective is to minimize the energy of the residual analytic trace, R(t), defined as 

the difference between the analytic seismic trace and the matched wavelets 
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2

1

]}),(*[)({)( ∑ −−=
J

jjj fttWAtUtR  .                                                                   (2-11) 

The wavelet coefficients in equation 2-11 are in matrix form and can be obtained by 

solving the normal equation   

UWI]W[WA H1H −+= ε     ,                                                                                      (2-12) 

where U  is an n-length vector of all seismic samples in the trace, ),...,( 21 mAAA=A  is an 

m-length vector of unknown complex wavelet amplitudes, W=[W(t,f1),W(t,f2),…,W(t,fm)] 

is an N by m matrix of wavelets, each row of which corresponds to a wavelet centered at 

each envelope peak, I  is an mm×  identity matrix and ε  is a small number which makes 

the solution stable. For seismic data, 1H I]W[W −+ ε  will be a complex-symmetric banded 

matrix, with the bandwidth proportional to the number of samples used to define the 

lowest frequency wavelet used, and therefore amenable to efficient solution. I display a 

graphical image of equation 2-11 which is illustrated in Figure 2.4 where the black lines 

are the real part of complex values (the complex trace or complex wavelets), and the red 

lines represent the imaginary part.  

 
 
Figure 2.4 Complex matrixes and their geophysical meaning. (Black line means the real 

part and red line means the imaginary part of complex values) 
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To obtain improved time-frequency resolution, I locally scan for an improved peak 

frequency and wavelet center time location. Brute force scans over all times and 

frequencies are key components of conventional matching pursuit algorithms. In my 

implementation, I only need to perform a residual search over a user-defined range of 

frequencies and time samples about the pre-computed peak frequency and peak envelope 

time to obtain the wavelet frequency-time pair that best cross-correlates with the data. For 

instance, I can search the frequency range 20 Hz around the pre-computed peak 

frequency and 20 ms around the time location of wavelet. I will use this ‘best’ wavelet in 

the subsequent least-squares complex amplitude calculation. The same process will be 

repeated for the next iteration. These extra scanning steps increase the run time but result 

in a better time frequency distribution. 

 

Using equations 2-5 or 2-7, I compute the complex spectrum by summing the 

complex spectrum of the constituent wavelets 

)(2

1
)],([env),(),( jttfi

jj

J

j
jjj efttwffwAftu −

=

−⋅= ∑ π ,                             (2-13) 

where  

2/122 )],(),([)],([env jj
H

jjjj fttwfttwfttw −+−=−                                         (2-14) 

is the envelope of the complex wavelets.  The amplitude spectrum is thus simply the 

magnitude of equation 2-13, while the phase is the angle between its real and imaginary 

parts. 
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2.3 DECOMPOSITION FLOW 

 

I summarize the decomposition flow in Figure 2.5. After pre-computing the 

wavelet dictionary, I begin by calculating the instantaneous envelope and frequency for 

each input trace. I then identify key seismic events by picking a suite of envelope peaks 

that fall above a user-specified percentage of the largest peak in the current (residual) 

trace. I have found that this implementation converges faster and provides a more 

balanced spectrum of interfering thin beds than the alternative ‘greedy’ matched pursuit 

implementation that fits the wavelet having the largest envelope, one at a time. I interpret 

such a greedy matching pursuit algorithm as being closer to an L1 minimization process 

in contrast to fitting all events which would be an L2 fit. I assume that the frequency of 

the wavelet is approximated by the instantaneous frequency of the residual trace at the 

envelope peak. The amplitudes and phases of each selected wavelets are computed 

together using a simple least-squares algorithm, such that the computed amplitudes and 

phases result in a minimum difference between seismic trace and matched wavelets. Each 

picked event has a corresponding Ricker or Morlet wavelet. I compute the complex 

spectrum of the modeled trace by simply adding the complex spectrum of each 

constituent wavelet.  This process is repeated until the residual falls below a desired 

threshold which is considered as the noise level.  

 

To better illustrate the flow shown in Figure 2.5, I test it on a real seismic trace 

extracted from 3-D seismic survey acquired on the offshore Louisiana Shelf, Gulf of 

Mexico, U.S.A. This spectral decomposition example is based on Ricker wavelets. Figure 
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2.6 represents the input seismic trace and five different iteration modeled traces which 

include 1st, 2nd, 4th, 8th and 16th iterations. The five different iteration residual traces are 

shown in Figure 2.7. Figure 2.8 shows the corresponding amplitude spectra of the 

modeled traces. We can see that after the 16th iteration that the modeled trace is very 

close to the original input trace, and the residual trace is quite small and can be 

considered as at or below the noise level.  

 

The Fortran90 spectral decomposition using least-squares algorithm is called 

“spec_cmp”. The UNIX “man page” of this algorithm is provided as Appendix B. 
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Figure 2.5 The flowchart for spectral decomposition using least-squares. 
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Figure 2.6 Input seismic trace and modeled traces of different iterations. 

 
 

 
Figure 2.7 Input seismic trace and residual traces of different iterations. 
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Figure 2.8 Amplitude spectra of different iterations corresponding to the modeled traces 
shown in Figure 2.6.  

 

2.4 DECOMPOSITION EXAMPLES 

 

I generated the single synthetic trace shown in Figure 2.9 to test the spectral 

decomposition algorithm using least-squares. The source wavelets used to generate this 

synthetic are 10 Hz, 30 Hz and 50 Hz Morlet wavelets with phase angles of 0o, 45o and 

90o. All the wavelets have the same amplitude. Figure 2.10 shows the modeled or 

reconstructed trace as well as the original trace. The residual trace in this figure is the 

difference between the original trace and the modeled trace. From Figure 2.10, we see 

that this spectral decomposition method provides a good match for well-separated 

wavelets. For composite wavelets such as at time 1.2 s, my approach still shows a good 

match even though it has some errors. Intuitively, I expect the decomposition to work 
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best if the real wavelets are similar to the wavelets that compose the wavelet dictionary. 

Once I have extracted all the matched Morlet wavelets, it is very easy to calculate the 

time-frequency distribution of the seismic trace, which I show in Figure 2.11.   

 

 
Figure 2.9 Synthetic traces composed by Morlet wavelets with different phases and mean 

frequencies. 
 
 

 
Figure 2.10 Modeled trace and residual trace obtained using the least-squares algorithm. 
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Figure 2.11 Time-frequency distribution of the synthetic trace shown in Figure 2.10. 

 
 

 Fitting a synthetic trace generated using the same wavelet dictionary which is 

used to fit it is the simplest problem. In general, real seismic source wavelets will not be 

exactly represented by any pre-computed wavelet dictionary. In addition, since I have 

two different wavelet dictionaries to do spectral decomposition, I also need to determine 

if the resulting spectra are similar. For this reason, in Figure 2.12a I extract a real seismic 

trace from the offshore Louisiana survey discussed above. The Ricker wavelet based and 

Morlet wavelet based spectral decomposition spectra are shown in Figures 2.12b and 

2.12c. Comparing Figures 2.12b and 2.12c, we can see that the Morlet wavelet 

decomposed spectrum has a similar decomposition spectrum as the Ricker wavelet, but 

has broader temporal extension than the Ricker wavelet decomposed spectrum (based on 

the Morlet wavelet defined by equation 2-6). If we go back to Figure 2.3, we note that the 

Morlet wavelet has a longer time-domain envelope than the corresponding Ricker 

wavelet with the same mean frequency. In section 2.2, I represented the time variation of 
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the spectrum by the envelope of the matched wavelet. Thus, the Morlet wavelet based 

time-frequency distribution has a longer temporal spread than that computed using the 

Ricker wavelet. One way to determine which wavelet dictionary is best is to examine the 

rate of convergence. I therefore plot the residual energy for each iteration in Figure 2.13. 

In this decomposition test I used a ‘greedy’ implementation of the matching pursuit 

technique, whereby each iteration only subtracts one wavelet from the seismic trace. 

From Figure 2.13, we note that the Ricker wavelet based spectral decomposition and 

Morlet wavelet based spectral decomposition have similar residual energy and rates of 

convergence for this input seismic trace.  

 

 
Figure 2.12 The comparison of spectral decomposition results using different wavelet 

dictionaries. (a) Input seismic trace, (b) the decomposed spectrum using Ricker wavelets, 
and (c) the decomposed spectrum using Morlet wavelets. 
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Figure 2.13 The residual energy of each iteration. (Black line is Ricker wavelet, red line 

is Morlet wavelet) 
 
 

I now apply spectral decomposition to a seismic line extracted from a 3D survey 

acquired over the Central Basin Platform, West Texas, U.S.A. At each iteration, I 

generate the corresponding seismic wavelets and add them to the previously modeled 

data (Figure 2.14a), compute a new data residual (unmodeled data) (Figure 2.14b), and 

accumulate the complex spectrum, the 40-Hz component of which I display in Figure 

2.14c. The amplitude and time of the chosen wavelets are displayed in Figure 2.14d. 

Figure 2.14 only shows 3 different iterations, 1st iteration, 4th iteration and 16th iteration. I 

can continue the iteration process until the final residue is below a user defined threshold 

value.  
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Figure 2.14 Illustration of the spectral decomposition using least-squares applied to a 

survey acquired over the Central Basin Platform, west Texas, U.S.A. Columns represent 
algorithm results after the first, fourth, and 16th iteration of (a) modeled data, (b) residual 

(unmodeled) data, (c) the 40-Hz component of the modeled data, and (d) the wavelet 
location and envelope of the modeled data. The peak frequency and phase of the modeled 

wavelets are not displayed. (Data courtesy of Burlington Resources) 
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2.5 SPECTRAL BALANCING 

 

If the seismic data have not been previously spectrally balanced, it is common 

practice to do so within the spectral decomposition algorithm. Following Partyka et al. 

(1999), I assume that reflectivity has a white spectrum and balance the spectrum within a 

user-defined bandwidth as shown in Figure 2.15. Spectral balancing accounts for a non-

flat source spectrum as well as changes in the source wavelet with depth. The average 

amplitude spectrum over the entire survey at a given time before balancing is shown in 

Figure 2.15a. The balanced average amplitude spectrum is displayed in Figure 2.15b. If I 

define the average spectrum as >< )( fα which is a function of frequency f , and its 

maximum, as maxα , I estimate a noise level as a fraction,ε , of the peak spectral amplitude. 

Then I rescale each spectral component by ])(/[1 maxafa ⋅+>< ε  thereby obtaining a 

‘balanced’ average amplitude spectrum. Figure 2.16 shows the average spectra before 

spectral balancing and after spectral balancing for the seismic survey from Louisiana 

Shelf, for a time range from 0.0 s to 4.0 s. The average spectra at three different time 

locations 1.0 s, 2.0 s, and 3.0 s are shown in Figure 2.17. Balancing the median rather 

than the mean spectrum has been found to provide better results in the presence of bright 

spots (Partyka, personal communication). Such spectral balancing is important for 

isolating tuning effects (such as the peak spectral frequency) of the geology, from that of 

the input seismic wavelet.  
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Figure 2.15 Spectral balancing to account for changes in the source wavelet with depth 

by rescaling each spectral component by ])(/[1 maxafa ⋅+>< ε ): (a) the average spectrum 
before balancing, and (b) the average spectrum after balancing. 

 

 
Figure 2.16 Average amplitude spectra (a) before and (b) after balancing of a seismic 

survey over Louisiana Shelf, Gulf of Mexico. 
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Figure 2.17 Average amplitude spectra at different time locations. (a), (c) and (e) are 

average amplitude spectra at time 1.0 s, 2.0 s and 3.0 s before spectral balancing; (b), (d) 
and (f) are average amplitude spectra at time 1.0 s, 2.0 s and 3.0 s after spectral balancing. 
 

Once balanced, I can animate through time or horizon slices of discrete spectral 

components, interpret selected volumes of discrete spectral components, or alternatively, 

generate composite volumes of peak frequency and peak amplitude. 
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2.6 SUMMARY 

 

I have developed a wavelet-based spectral decomposition technique by combining 

the matching pursuit and least-squares algorithms. The wavelet dictionary can be Ricker, 

Morlet or other wavelets. Not surprisingly, when the real seismic wavelet is similar to the 

wavelet dictionary used, the method gives a good decomposition result. By using the 

envelope and response frequency of complex trace analysis, I can greatly accelerate the 

matching pursuit algorithms. Using least-squares allows me to simultaneously solve for 

coefficients of wavelets having comparable amplitudes that overlap. Synthetic and field 

examples show that this new spectral decomposition method yields good time frequency 

distributions.  
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CHAPTER 3 

MULTI-COLOR DISPLAY OF SPECTRAL ATTRIBUTES∗ 

 

3.1 INTRODUCTION 

 

 Current spectral decomposition techniques typically generate a suite of tightly 

sampled instantaneous spectral attribute volumes (Castagna et al., 2003; Liu and Marfurt, 

2005; Partyka et al., 1999). While there is useful information in these instantaneous 

spectral attribute volumes, it is not easy for seismic interpreters to inspect each one of 

them individually. Typical volumetric analysis will generate between 10 and 100 output 

volumes of both magnitude and phase, which can easily fill up the limited disk space 

available on an interpretation workstation. As a partial solution to this challenge, Liu and 

Marfurt (2005) combined peak frequency and peak amplitude to highlight channel 

systems.  

 

 In this chapter, I will discuss three different display techniques to delineate subtle 

depositional and structural patterns. The first technique simply animates through single 

frequency volumes and is the simplest way to show spectral variation. The second 

technique is a composite plot of peak frequency, peak amplitude and coherence using a 

                                                                 
∗ Jianlei Liu and Kurt Marfurt, to appear in The Leading Edge 
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hue-lightness-gray colormap that is able to delineate both lateral discontinuities and 

vertical changes in thickness in a single image. The advantage of such a composite image 

is that the peak frequency is sensitive to thin bed vertical thickness variations, while 

coherence is sensitive to lateral discontinuities. The analogous composite plot of phase 

(rather than amplitude) at peak frequency can also highlight stratigraphic and structural 

features. While several workers have co-rendered three spectral components by plotting 

them against Red-Green-Blue (RGB) color model components, the optimum choice of 

these frequencies is not clear. For the third display technique, I partially circumvent this 

problem by using RGB to display the coefficients of three predetermined basis functions. 

When added together, these coefficient-weighted basis functions approximate the 

computed spectrum in a least-squares sense. This display method provides moderate 

details of the full amplitude spectrum. More importantly, instead of outputting 100 

different single spectral components, I can output a single RGB volume. Onstott et al. 

(1984) firstly introduced the “ColorStack” which used RGB to plot near-, mid-, and far-

offset seismic data. Stark (2006) used a similar RGB plotting technique, which assigns 

the average amplitude of three non-overlapping spectral bands to RGB rather than the 

somewhat more continuous, overlapping spectral bands that I will use. I use ocean 

bottom data from the Louisiana Shelf, Gulf of Mexico to illustrate the value of the three 

display techniques to convey the spectral information. 
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3.2 PLOTTING TECHNIQUES 

 

 Spectral attributes can be viewed in different ways. I will list three different 

methods to plot spectral attributes. After time-frequency decomposition, a single 3D 

seismic volume is decomposed into a suite of single frequency 3D volumes (or 

alternatively, a 4D volume). Since most seismic interpretation software is designed to 

analyze 3D data volumes, the most common interpretation method is either to directly 

view one single spectral component at a time, or alternatively, to interleave spectral 

components along a horizon slice and interpret the spectra as a new 3D volume with x, y, 

and f axes through which I animate. 

 

 The second method is to represent the spectrum with a few statistically important 

parameters. I find that composite volume of peak frequency (or alternatively, the phase at 

peak frequency), peak amplitude (or peak amplitude above average amplitude) and 

coherence attributes to be particularly useful. Other workers propose estimating the 

spectrum by its bandwidth and kurtosis, though I have seen little published in this area. 

However they are computed, the main advantage of a composite plot is that I only have 

one 3D composite volume to investigate. Coherence attributes can detect the structural 

discontinuities while the peak frequency can predict vertical variations in thickness.  

 

 The third plotting method of representing 100 or more spectral components is to use 

Red-Green-Blue (RGB) to display sub spectral estimates of the data using predetermined 
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basis functions.  The following is the detail of RGB plotting. I first define three different 

basis functions which represent Red, Green and Blue (RGB) functions (Figure 3.1). I 

have chosen three simple raised cosine basis functions with well-defined center 

frequencies.   

 

 
Figure 3.1 Red, Green and Blue basis functions.  

 

 The equations I used to describe RGB functions are  
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where )( fbR , )( fbG , and )( fbB are Red, Green and Blue basis functions, respectively, 

Rf , Gf , and Bf are the center frequencies for Red, Green and Blue basis functions, 

Bandwidthf  is the frequency bandwidth of the input seismic data, and k is a constant value 

which controls the bandwidth of the basis functions. From equations 3-1, 3-2 and 3-3, we 

can define different RGB functions when we provide different RGB center frequencies 

and bandwidth values.  

 

 After I define the three RGB basis functions, I can use least-squares solutions to 

match the three basis functions to the amplitude spectrum at each time location which is 

decomposed by spectral decomposition methods. The objective is to minimize the 

residual energy between amplitude spectrum and the RGB basis functions. The residual 

energy is defined as 

{ }2)]()()([)()( fbcfbcfbcfufR BBGGRR ++−=  ,                                                    (3-4) 

where )( fR  is the residual energy, )( fu is the amplitude spectrum, Rc , Gc , and Bc are 

the three coefficients corresponding to Red, Green and Blue basis functions, and f is the 

frequency. I write these three basis functions as a 3×m  matrix, B , where 
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and the coefficients and spectral components as vectors 
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then the least-squares solution of C  will be 

UBεI]B[BC T1T ⋅+= −    ,                                                                                          (3-6) 

where I is a 33×  identity matrix and ε  is a small number which makes the solution 

stable.  

 

 After solving equation 3-6, I map the three coefficients corresponding to Red, Green 

and Blue basis functions directly against Red, Green and Blue in readily-available display 

algorithms. Figure 3.2 demonstrates the least-squares fit coefficients of the three basis 

functions of an instantaneous frequency amplitude spectrum (Black line). The maximum 

amplitude values of Red, Green and Blue dash-lines correspond to the RGB 

coefficients, Rc , Gc , and Bc . Figure 3.3 shows an example of the RGB plot applied to a 

single synthetic trace. Figure 3.3b is the time-frequency distribution of the input synthetic 

trace shown in Figure 3.3a. Figure 3.3c is the least-squares fit of the RGB basis function 

of the time-frequency distribution shown in Figure 3.3b. Figure 3.3d is the final RGB plot 

of the three RGB coefficients displayed in Figure 3.3c. By exploiting the well-established 

color mixing model, it is easy for an interpreter to associate red with a lower frequency, 

green with a middle frequency, and blue with a higher frequency. Likewise, most 

interpreters know that cyan falls between blue and green, yellow between green and red, 

and then a bi-modal spectrum of low and high frequencies will appear as magenta. Flat 
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spectra will appear as shades of gray. Least-squares RGB plots have the same advantage 

as composite plots of peak frequency and peak amplitude. Based on the decomposed 

time-frequency distributions, I can represent the gross spectral behavior with a single 

multi-attribute display. For more details, we still need to look through the single 

frequency volumes. 

 
Figure 3.2 Red, Green and Blue coefficients calcuated by least-squares fit with 

instatneous frequency distribution. 
 

 
Figure 3.3 (a) Synthetic trace; (b) time-frequency distribution of (a); (c) Red, Green and 

Blue coefficients of least-squares fit of (b); (d) RGB plot of (c). 
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3.3 FIELD DATA EXMAPLES 
 
 

 The field data used for color displays is from the Louisiana Shelf, Gulf of Mexico, 

U.S.A. 

 

3.3.1 Single Frequency Volume Plot 

 

I use the wavelet based least-squares spectral decomposition method described in 

Chapter 2 to decompose seismic data into a suite of 80 single frequency volumes ranging 

between 10 and 90 Hz. Figure 3.4 shows the input seismic volume. The 30 Hz volume in 

Figure 3.5 is representative of the data quality. A black arrow indicates a meandering 

channel. Since channels may have different spectral response than the neighboring data 

points, different single frequency volumes will in general delineate or highlight different 

thickness channels. 
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Figure 3.4 Seismic volume. (Seismic data courtesy of Fairfield Industries) 

 
 

 
Figure 3.5 Single frequency 30 Hz volume. 
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3.3.2 Composite Plot of Spectral Attributes and Coherence 

 

I will generate two multi-attribute volumes using composite color-maps. The first 

composite volume is a combination of peak frequency, peak amplitude and coherence 

attributes. Figure 3.6 shows the work flow used to generate composite volume by 

combining peak frequency, peak amplitude and coherence attributes (the time slice at 

2.220 second). Figures 3.6a, b, and d show time slices of peak frequency, peak amplitude, 

and coherence. Figure 3.6c is the initial composite slice of peak frequency and peak 

amplitude. Combining peak frequency and peak amplitudes, we can easily find the 

frequency variation at strong amplitudes. Figure 3.6e demonstrates the final composite 

slice of peak frequency, peak amplitude and coherence. The advantage of the composite 

plot shown in Figure 3.6e is that both structural discontinuities and bed thickness are 

shown in a single image. Coherence attributes can detect discontinuities, while peak 

frequency indicates the bed thickness changes. Bright (higher values of lightness) colors 

indicate a highly tuned (non flat) spectrum. A higher peak frequency (a red hue) indicates 

a thinner layer, while a lower peak frequency (a blue hue) indicates a thicker layer. The 

yellow channel indicated by the upper left white arrow in Figure 3.6e is tuned in at 50 

Hz. The  lower right white arrow points to the fault ( Figure 3.6e). 
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Figure 3.6 Plot showing the composite volume (time slice at 2.220 s). (a) Time slice of 
peak frequency, (b) time slice of peak amplitude, (c) time slice of composite volume of 
peak frequency and peak amplitude, (d) time slice of coherence, and (e) time slice of 

composite volume of peak frequency, peak amplitude and coherence. (Data courtesy of 
Fairfield Industries) 
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  The second composite volume is a combination of phases at the peak frequency, 

peak amplitude above background, and coherence attributes. Taner, Koehler and Sheriff 

(1979) stated that instantaneous phase may indicate discontinuities. After time-frequency 

decomposition, I also compute a suite of phase as well as amplitude volumes at each 

frequency. In Figure 3.7 only phases at the peak frequency are used to generate the 

composite volume. Comparing Figure 3.6e and 3.7, we note that the sinuous channel at 

the upper left of figures is visible in both figures. Figure 3.7 shows the channel because 

of the different phase information as compared to the background response, while in 

Figure 3.6e the channel and background have different frequency tuning.  

 

 
Figure 3.7 Time slice of composite volume of phase at peak frequency, peak amplitude 
and coherence at 2.220 s. The magenta channel has a -90 degree phase, consistent with 

thin bed tuning (white arrow). 
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3.3.3 Red-Green-Blue Plot 

 

I am now ready to apply the least-squares Red-Green-Blue basis function technique 

to the same data volume. Figure 3.8 shows the process of RGB display on a 2-D seismic 

line. Figure 3.8a shows a vertical section through the seismic data. A red arrow indicates 

a pay reservoir. The eight single frequency sections shown in Figure 3.8b represent the 70 

different frequencies computed between 10 to 80 Hz.  The Red-Green-Blue curves which 

represent three basis functions are shown in Figure 3.8b. After using least-squares fitting 

on these three different basis functions with decomposed frequency values, I obtain the 

Red, Green and Blue sections shown in Figure 3.8c, 3.8d and 3.8e. The final RGB plot is 

given in Figure 3.8f. A white arrow points to the red zone which indicates a low 

frequency zone. Figure 3.9 displays the time slice of RGB plot at 2.220 s.  It is clear to 

see that the channel (cyan) has a different frequency response compared to background 

frequency response. 

 

Fortran90 program generate_ppm, generates the RGB plotting format file based on 

three input Red, Green and Blue files. I provide the UNIX ‘man page’ of this algorithm 

as Appendix C. 
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Figure 3.8 Red-Green-Blue plotting technique. (a) Seismic section; (b) single frequency 

slices; (c) , (d) and (e) are Red, Green and Blue values calculated by three basis 
functions; (f) RGB plot of (c), (d) and (e). (Data courtesy of Fairfield Industries) 
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Figure 3.9 Time slice of Red-Green-Blue plot at 2.220 s. 

 

 3.4 SUMMARY 

 

I have applied three different color display techniques to a suite of 80 spectral 

components in an attempt to summarize key information in a single image. The direct 

color plot of single frequency volume is the simplest way to view decomposed frequency 

attributes, but given time constraints, it is generally infeasible for a seismic interpreter to 

view all the frequency volumes for more than a few horizons of interest. The alternative 

composite color display of peak frequency, peak amplitude and coherence can highlight 

the discontinuities and thickness variation. The third Red-Green-Blue plot can represent 

the general frequency changes of seismic data. Both the composite color plot and the 

RGB plot can save time for the seismic interpreter when viewing spectral attributes 

quickly and can be considered as the first step when displaying instantaneous spectral 

attributes. 
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CHAPTER 4 

THIN BED THICKNESS PREDICTION USING PEAK INSTANTANEOUS 

FREQUENCY 

 

4.1 INTRODUCTION 

 

 Widess (1973) showed that we can estimate the thickness of a thin layer (one whose 

thickness is less than ¼ wavelength, or the tuning thickness) by exploiting the linear 

relation between thickness and reflection amplitude. In addition, the tuning thickness 

itself is inversely proportional to the peak spectral frequency of a broadband spectral 

response. Robertson and Nogami (1984) discussed the combination of envelope and 

instantaneous frequency to predict thin bed thickness.   Chuang and Lawton (1995) 

studied four different wedge models to show that peak frequency slowly decreases as 

layer thickness increases. Based on instantaneous attributes (Taner et al., 1979), Partyka 

(2001) compared Widess’s amplitude method simple measurements of peak to trough 

travel time as well as discrete Fourier transform (spectral decomposition) components to 

predict thickness. Nissen (2002) demonstrated the relationship between instantaneous 

frequency and “D” sand thickness of Sooner unit in Colorado. Unfortunately, the 

instantaneous frequency obtained using complex trace analysis can become unstable and 

unreliable when seismic data has a low signal-to-noise ratio. Instead, I propose using 
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peak instantaneous frequency to predict thin bed thickness. Peak instantaneous frequency 

is calculated in a small window which is around the thin bed response. The general 

concept is that thicker thin bed has lower peak instantaneous frequency, while thinner bed 

has higher peak instantaneous frequency. I assume that the thin bed reservoir’s thickness 

is less than or around tuning thickness.  

 

 In this chapter, I begin with the theoretical formulation for thin bed thickness 

prediction using the peak instantaneous frequency. Next I construct two simple wedge 

models to verify the relationship between peak instantaneous frequency and thin bed 

thickness.  Finally I use 3D seismic data from the Fort Worth basin with 16 wells to 

calibrate this method to predict the thickness of the Pennsylvanian age Caddo limestone. 

For the field example, I find that the peak instantaneous frequency is well-correlated with 

the layer thickness measured in the wells which can be used to predict Caddo limestone 

thickness.  

 

4.2 THEORY OF THIN BED THICKNESS PREDICTION 

 

 Instantaneous frequency is the first derivative of instantaneous phase (Taner et al., 

1979). It can also be defined as a conditional average frequency in a range of time 

(Robertson and Nogami, 1984; Barnes, 1993; Cohen, 1995) 

∫
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where if  is instantaneous frequency in Hz, f  is frequency of the spectral component in 

Hz, and )( fA  is the amplitude spectrum. 

 

 I can replace )( fA  with the thin bed response of a Ricker wavelet )()( fWfR ⋅ , 

where )( fR and )( fW are the spectral components of the reflection series and the Ricker 

wavelet, respectively. The amplitude spectrum )( fW  of a zero-phase Ricker wavelet is 
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−

=
π

     ,                                                 (4-2) 

where pf  is peak frequency of the Ricker wavelet. 

 

 The amplitude spectrum )( fR  of the thin bed reflection response is 

)2cos(2)( 21
2

2
2

1 tfrrrrfR ∆++= π    ,                                                      (4-3) 

where, 1r  and 2r are top and bottom reflection coefficients, respectively, and t∆  is the 

two way travel time thickness of the thin bed. 

 

 Using equations 4-2 and 4-3, I obtain the final amplitude spectrum )( fA  
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Substituting this expression for )( fA from equation 4-4 into equation 4-1 and assuming 

that both magnitude of 1r  and 2r  equal to r , I obtain 
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As t∆  approach zero, )sin( tf∆π  approaches tf∆π  . 

 

 Following Cohen (1995) and Barnes (1993) the peak instantaneous frequency of a 

Ricker wavelet convolved with a wedge is 
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This estimate differs slightly from Robertson and Nogami (1984), who predict the peak 

instantaneous frequency of single zero-phase Ricker wavelet to be 

pi ff 1283.1≈     .                                                                                     (4-7) 

Equation 4-6 is valid only when the top and bottom reflection coefficients have equal 

magnitude and opposite polarity. The other assumption is that t∆  is close to zero.  
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 Equations 4-6 and 4-7 tell us that the peak instantaneous frequency of a thin bed 

seismic response is somewhat higher than Robertson and Nogami’s (1984) thick bed 

seismic response. This phenomenon may be used to find the relationship between peak 

instantaneous frequency and thickness.  

 

4.3 WEDGE MODEL EXAMPLE 

  

 I built two wedge models to test this method. The top and bottom reflection 

coefficients of the first wedge model have the same magnitude but opposite polarity (-

0.01 and +0.01). The second wedge model has different magnitude top and bottom 

reflection coefficients (-0.01 and +0.009).The input wavelet is a zero-phase Ricker 

wavelet with peak frequency 35 Hz. Both wedge thicknesses increase from 0.3 m (first 

trace) to 25 m (last trace). Figure 4.1 shows the synthetic seismic response of the first 

wedge model. Figure 4.2 represents maximum amplitude and peak instantaneous 

frequency versus wedge thickness for the two wedge models. I plot the peak frequency 

against thickness for these two models and note that the peak instantaneous frequency has 

an inverse relationship with wedge thickness with peak instantaneous frequency 

decreasing when the wedge thickness increases. For the second model (red dash line) this 

pattern is repeated except for a change at very small thicknesses (less than one-eighth 

wavelength). 
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Figure 4.1 Synthetic seismic response of wedge model with top and bottom reflection 

coefficients -0.01 and 0.01. 
 
 
 

 
        (a)                                                                         (b) 

Figure 4.2 (a) Maximum amplitude versus wedge thickness for the two models. (b) Peak 
instantaneous frequency versus wedge thickness for the two wedge models. (First wedge 
model with -0.01 and 0.01 is black solid line, second wedge model with -0.01 and 0.009 

is red dash line) 
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 4.4 FIELD DATA EXAMPLE 

 

 My field data are from the Fort Worth Basin, TX, U.S.A. and consist of a 3-D 

seismic dataset and 25 wells. The Caddo limestone is present across the entire 3-D survey 

and is thinner than the dominant wavelength of the seismic data (Figure 4.3). The P-wave 

velocity of Caddo limestone is around 18000 ft/s (or around 5600 m/s), and the quarter 

wavelength of Caddo limestone is around 80 ft or a frequency of 56 Hz. Using the Hilbert 

transform to calculate the complex seismic attributes, I can easily compute the 

instantaneous frequency of all the traces. In a 9 ms window around the zero-crossing of 

Caddo limestone event, I extract the peak instantaneous frequency and display it as a map 

(Figure 4.4). Since the whole survey is composed of three surveys of different data 

quality, I did not use the two old small seismic surveys which are denoted by the dashed 

red lines. Only 16 wells of the biggest survey are used for following thickness prediction.  

 
Figure 4.3 Seismic vertical section with Caddo limestone thin bed response just above 

0.75 s. (Seismic data courtesy of Devon Energy) 
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Figure 4.4 Peak Instantaneous frequency map of Caddo limestone (Black dots are well 
locations; areas inside dashed red lines are two old surveys). (Data courtesy of Devon 

Energy) 
 

 Next I measure the Caddo limestone thickness from logs at each of the 16 wells and 

cross-plot it against the peak instantaneous frequency (Figure 4.5). To simplify the 

problem, I use a simple inverse linear trend to define the relation between peak 

instantaneous frequency and thickness. Based on this inverse linear trend, we can 

estimate the Caddo limestone thickness throughout the whole survey (Figure 4.6). The 

cold colors (blue) indicate thinner areas, while the hot colors (red) indicate thicker areas. 

Figure 4.7 represents the RMS amplitude around the limestone horizon. Comparing 

Figures 4.6 and 4.7, they have good matches for the thin bed zones and thick zone 

indicated by black arrows. From amplitude tuning curves, we know that amplitude 
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increases as thickness increases when the thin bed thickness falls below the tuning 

thickness (quarter wavelength). 

 
Figure 4.5 Cross-plot of peak instantaneous frequency and Caddo limestone thickness. 

 

 
Figure 4.6 Predicted Caddo limestone thickness through simple inverse linear trend of 

Figure 4.5. 
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Figure 4.7 RMS amplitude around Caddo limestone horizon. 

 
 To better understand the processes that gave rise to these variations in thickness, I 

examine a horizon slice along the Caddo horizon through the most negative curvature 

volume (Figure 4.8). The collapse features and structural control through basement 

faulting is discussed by Sullivan et al. (2006). Although these processes began as early as 

the Ordovician, the Caddo was assumed to be deposited as a thin, flat layer, the curvature 

that we see in Figure 4.8 was induced after Caddo deposition (or during or after 

Pennsylvanian). Hardage et al. (1996) document how these collapse features provide 

increased accommodation space for the Atoka sands that lie just below the Caddo 

limestone.  Therefore, I interpret the thicker areas of Caddo accumulation to correspond 

to increased accommodation space through a combination of tectonics and deeper 
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diagenesis during Pennsylvanian time. Given the thickness of the Caddo, it should not be 

surprising that only some of these potential depocenters were active. 

 

 
Figure 4.8 Horizon slice along the Caddo through the most negative curvature volume. 
Thick zone denoted by magenta is controlled by a strike slip fault and Riedel shear seen 
in curvature. Thicker areas (in Figure 4.7) denoted by white lines correspond to collapse 

features seen in curvature. 
 

4.5 SUMMARY 

 

 Thin bed thickness can be predicted by peak instantaneous frequency when the thin 

bed response has small interference effects from other layers. Based on a simple wedge 

model, the peak instantaneous frequency is inversely proportional to the layer thickness 

such that thinner layers exhibit a higher peak instantaneous frequency. However, when 

the top and bottom reflection coefficients are different, this inverse trend becomes more 
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complicated for layers less than one eighth wavelength thick. I have shown that given 

adequate well control that the peak instantaneous frequency can provide a good estimate 

of reservoir thickness of layers below thin bed tuning such as the Caddo limestone in the 

Fort Worth Basin. This prediction method can be considered an alternative thickness 

prediction technique to calibrate the thickness predicted by the popular amplitude 

technique presented by Widess (1973).  
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CHAPTER 5 

INSTANTANEOUS SPECTRAL ATTRIBUTES TO DETECT CHANNELS∗ 

 

5.1 INTRODUCTION 

 

Channels filled with porous rock and encased in a nonporous matrix comprise one 

of the more important stratigraphic exploration plays. However, detailed mapping of 

channels has a much broader impact. By using modern and paleo analogs, mapping 

channels helps map the paleo depositional environment, and helps interpret less obvious 

prospective areas such as fans and levees. By mapping the width, tortuousity, and spatial 

relation of  meandering channels, avulsions, braided streams, among others, 

geomorphologists are able to infer channel depth and fluid velocity during the time of 

formation, and thus better risk whether the fill is sand or shale prone.  

 

Seismic coherence and other edge-sensitive attributes (Bahorich and Farmer, 1995, 

Luo et al., 2003) are among the most popular means of mapping channel boundaries. 

Although these attributes can easily detect channel edges, they cannot indicate the 

channel’s thickness. As channels become very thin (well below ¼ wavelength) their 

waveform becomes constant, such that coherence measures based on waveform shape 

cannot see the channel at all (Chopra and Marfurt, 2006). 

                                                 
∗ Jianlei Liu and Kurt Marfurt, to appear in Geophysics 
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Spectral decomposition has been used to highlight channels (Partyka et al., 1999; 

Peyton et al., 1999). The spectral decomposition images are complementary to coherence 

and edge-detection attribute images in that they are sensitive to channel thickness rather 

than to lateral changes in seismic waveform or amplitude. Spectral decomposition 

analysis can be done within a fixed sized analysis window (using a short-window discrete 

Fourier transform, or SWDFT) following a picked stratigraphic horizon, thereby 

generating a suite of constant frequency spectral amplitude maps. Most commonly, the 

interpreter animates through these maps and chooses those maps with spatial patterns 

corresponding to reasonable geological models. There is a strong correlation between 

channel thickness and spectral amplitude (Laughlin et al., 2002).  

 

Widess (1973) showed that for thin beds below the tuning frequency, the 

composite seismic amplitude decreases linearly with thickness. Chuang and Lawton 

(1995) generalized this work using a frequency spectrum and observed that the peak 

frequency slightly increases as the layer thickness decreases. Marfurt and Kirlin (2001) 

exploited this observation and applied it to a SWDFT of a data set for the Plio-

Pleistocene Mississippi River in the Gulf of Mexico. They found that the frequency 

corresponding to the peak spectral amplitude is an excellent means of summarizing the 

information content of the full spectrum, with a low peak frequency corresponding to 

thick channels, and a high peak frequency corresponding to thin channels. 

 

Even with careful tapering, spectral decomposition using the SWDFT has window 

effects (Cohen, 1995). For this reason, Castagna et al. (2003) looked at alternative time-
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frequency decomposition methods based on wavelet transforms to compute what is 

commonly called instantaneous spectral attributes (ISA). Much of their work has been 

used to identify channels (e.g. Sinha et al., 2005; Matos et al., 2005), but to my 

knowledge, little has been published on the use of peak-frequency volumes based on 

these techniques, although Liu et al. (2004) showed how the ISA peak frequency 

significantly increases with decreasing layer thickness. 

 

In this chapter, I will show how instantaneous spectral attributes can be used to 

generate composite volumes of both peak spectral frequency and the amplitude at that 

peak spectral frequency. I show how these algorithms behave on simple synthetics. I then 

show how the peak frequency and the amplitude of the peak frequency can be effectively 

co-rendered using a 2D color map (or palette). By generating a composite of this 2D 

color map with a gray scale we can also co-render coherence. Finally, I apply this 

workflow to two channels systems – one seen in a marine survey acquired over Tertiary 

channels acquired in Gulf of Mexico, and the other seen in a land survey acquired over 

Paleozoic channels in Central Basin Platform, West Texas, U.S.A.   

 

5.2 SYNTHETIC MODEL 

 

In Figure 5.1a, I built a simple wedge model to test the relation between thickness 

and instantaneous spectral attributes. Figures 5.1b-d represent the instantaneous spectral 

component at 20 Hz, 30 Hz and 40 Hz, respectively. The source wavelet is a zero-phase 

Ricker wavelet with a peak frequency at 30 Hz. The P-wave velocity of the wedge is 
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(2200 m/s) and the thickness linearly increases from 0 m to 30 m. Comparing Figures 

5.1b-d, we note that the maximum amplitude of single frequency component section 

moves to the left or narrower side of the wedge, indicated by red arrows. This movement 

shows how ISA components respond to the thin bed tuning effect reported by Widess 

(1973), who noted that the peak amplitude response will occur at 1/4 wavelength of 

dominant period.  

 

 
Figure 5.1 (a) Synthetic seismic response of wedge model; (b) spectral component 20 Hz; 

(c) spectral component 30 Hz; (d) spectral component 40 Hz. 
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5.3 2D COLOR MAPS 

 

Many seismic attributes are only meaningful when put in the context of a second, 

independent, attribute. For example, a measurement of reflector azimuth is meaningless if 

the dip magnitude of the reflector is flat. Similarly, a measure of wavelet phase is 

meaningless if its amplitude falls below the signal-to-noise level. In this chapter, the 

value of the peak spectral frequency has meaning only if that peak lies significantly 

above the average amplitude spectrum. I choose a 2D color map which combines hue and 

lightness that will be used to represent peak frequency and peak amplitude above average, 

respectively (Figure 5.2a). Figures 5.2b and 5.2c depict two idealized spectra, one that is 

high amplitude, highly peaked at a high frequency, and one that is lower amplitude, 

flatter and peaked at a lower frequency.  Since the spectrum shown in Figure 5.2b has a 

relative higher peak frequency and peak amplitude above average, it will be represented 

by the bright red color shown in Figure 5.2a.  In contrast, the spectrum shown in Figure 

5.2c has a lower peak frequency and peak amplitude above average and will represented 

by the dark green color shown in Figure 5.2a. 
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Figure 5.2 (a) 2D color map of peak frequency mapped against hue and peak amplitude 

above background mapped against lightness (After Lin et al., 2003). Two idealized 
spectra include (b) a spectrum with a high peak frequency and high amplitude above 

average maps to a bright orange color, and (c) a spectrum with a low peak frequency and 
low amplitude above average maps to a dark green color. 
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To display coherence, I turn to the concept of composite displays discussed by 

Chopra (2001) and Lin et al. (2003) (Figure 5.3). If the coherence is above a threshold, I 

will display the peak frequency and amplitude using the 2D color table displayed in 

Figure 5.2a. If the coherence falls below a threshold, I will display the coherence against 

a 1D gray scale. In this manner, coherence defines the edges (and thus width) of the 

channels, while the peak frequency defines the relative thickness.  

 

 
Figure 5.3 Color map showing compositing of coherence and spectral component 

volumes. For high values of coherence (indicating good reflectors) I plot peak frequency 
and peak amplitude above average using the 2D color table shown in Figure 5.2a. For 

low values of coherence I plot coherence against a simple gray scale. For use with 
conventional color display tools, the color bar needs to be mapped to the traditional 1D 
color bar indicated in this figure. The composite image is generated by first creating an 

output attribute volume with values ranging between 0 and 255. Each of these values map 
to a corresponding RGB triplet shown in this Figure. 

 

Figure 5.4 shows a   map view and a cross section of an idealized channel system. 

From this image, the thick main channel is statistically wider and indicates a low peak 

frequency response. The narrower channel is statistically thinner, and therefore tunes at a 

higher peak frequency.  
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Figure 5.4 (a) Map view and (b) cross section view of idealized channels.  
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5.4 FIELD DATA EXAMPLES 

 

5.4.1 A Marine Survey over Tertiary Channels: South Marsh Island, Gulf of Mexico 

 

Conventional analysis through animation of spectral components as described by 

Partyka et al. (1999) works very well when applied to a horizon. This methodology 

breaks down, however, when analyzing volumes of seismic data, such as the one shown 

in Figure 5.5 for a South Marsh Island survey. Generation of eighty output volumes at 1 

Hz increments between 10 and 90 Hz quickly fills the available disk space. The 

computational effort of spectral decomposition is greatly outweighed by shear amount of 

output data. Even though we can reduce the output volumes by sampling every 10 Hz, it 

is still awkward to simultaneously deal with 9 common frequency volumes. For this 

reason, I propose generating only the peak frequency and peak amplitude volumes by 

time-frequency decomposition, and combining them with coherence, thereby providing 

an image that can be used to rapidly identify features of stratigraphic interest. If 

appropriate, the individual spectral components can be regenerated and examined either 

along constrained zones of interest, or for a constrained range of frequencies (such as 

done for reservoir illumination by Fahmy et al., 2005). 

 

Figure 5.6a shows the time slice of coherence volume at t = 1.416 s. White arrows 

indicate a wide main channel and yellow arrows indicate a narrow branch channel. In the 

time slice through the 20 Hz spectral component, Figure 5.6b, only the main channel 

shows up. In contrast, in the time slice through the 60 Hz spectral component, Figure 5.6c, 
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only the branch channel shows up. This phenomenon implies that the main channel is 

thicker than its branch.  

 

The following examples will be applied to a composite volume of peak frequency, 

peak amplitude and coherence, for the same data set of Louisiana shelf, Gulf of Mexico. 

The plot uses a composite color map of hue-lightness-gray.  

 

Figure 5.7a shows a time slice of coherence volume at t = 1.230 s. The 

meandering channels are easily interpreted in the coherence time slice (white arrows). 

Figure 5.7b demonstrates the time slice of composite volume of peak frequency, peak 

amplitude and coherence of the same slice time. In Figure 5.7b, white arrows point to the 

meandering channels. Comparing Figures 5.7a and 5.7b, we see that the composite plot 

can highlight channels from background color. For instance, most of the channels are 

plotted by green color. The coherence can detect the discontinuity of seismic events 

corresponding to the edge of the channel, while the peak frequency and peak amplitude 

can highlight channel in different color.  Figures 5.8a and 5.8b show another time slice of 

coherence and composite volume at 1.482 second. The meandering channel is apparently 

shown in both time slices (white arrows). The advantage of the composite plot is that 

peak frequency and peak amplitude can add additional information to predict variation of 

thickness. For instance, in upper section (triangular section) of Figure 5.8b, the color of 

peak frequency changes from blue to green and red which may indicate the thickness 

changes from thick to thin. Higher peak frequency tuning indicates thinner thickness.  
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Figure 5.5 An example of 3D time-frequency decomposition showing one input seismic 
volume and multiple decomposed single frequency volumes of 20 Hz, 40 Hz and 60 Hz 

for an OBC data volume acquired over South Marsh Island, Gulf of Mexico. (Data 
courtesy of Fairfield Industries) 
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Figure 5.6 Time slices at t = 1.416 s through (a) coherence, (b) the 20 Hz spectral 

component, and (c) the 60 Hz spectral component for the same input volume shown at the 
top of Figure 5.5. 



 74

 
 
 
 
 
 
 

 
Figure 5.7 (a) Time slice of coherence volume at t = 1.230 s; (b) time slice of composite 

volume of peak frequency, peak amplitude and coherence at t = 1.230 s. 
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Figure 5.8 (a) Time slice of coherence volume at t = 1.482 s; (b) time slice of composite 

volume of peak frequency, peak amplitude and coherence at t = 1.482 s. 
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5.4.2 A Land Survey over Paleozoic Channels: Central Basin Platform, West Texas, 

U.S.A. 

 

I now apply this same technique, to older, indurated rocks imaged in the second 

field data example from West Texas, USA. Figure 5.9 shows the time slice of seismic 

volume at t = 1.060 s. The arrows point to Pennsylvanian age channels. Figures 5.10 and 

5.11 show two time slices at t = 1.060 and 1.096 s of peak frequency and peak amplitude 

above average (peak amplitude subtract average amplitude value) using the color bar 

described in Figure 5.2a. The channels are clearly shown up in these two time slices. We 

note that the channel has a green color while background has blue color, implying that the 

channel has a higher peak frequency than the background response. In this image I did 

not use coherence to identify the edges of the channel, so the color itself highlights the 

channels. In order to view all the channels in one slice, I flatten the horizon along the 

Atoka unconformity (the blue pick shown in Figure 5.13a). Figure 5.12a shows the 

phantom horizon slice 44 ms above the Atoka unconformity. Figures 5.12b-d are 

amplitude spectra corresponding to the points indicated by the magenta arrows. Figure 

5.12b shows a high amplitude peak frequency at about 55 Hz and is thus mapped as 

bright yellow. Figure 5.12c shows a high amplitude peak frequency at about 43 Hz 

pointing to the channel mapped as bright green. Figure 5.12d shows a low amplitude peak 

frequency at about 28 Hz pointing to the background response mapped as a dark blue. 

Figure 5.13a shows the seismic section of line AB from Figure 5.12a. Figures 5.13b-d 

show the same amplitude spectrums as Figure 5.12. In the seismic section, the notches in 

Figure 5.13b are due to bed interferences. Figure 5.13c corresponds to the amplitude 
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spectrum of the channel’s response with relatively higher peak frequency compared to the 

background response plotted in Figure 5.13d. These three graphs show that bed 

interferences may cause frequency notches (which depend on the bed thickness and 

geometry), some of which can be individually resolved (as in Figure 5.13b) and others 

can not (Figure 5.13c).  

 

At present, I interpret these images in three steps. First I use principles of 

geomorphology together with modern and paleo analogues to identify stratigraphic 

features of interest. Second, I calibrate these patterns through conventional interpretation 

of the vertical seismic section, coupled with our understanding of the physics of thin bed 

interference phenomena. Finally, I use colors to provide a quantitative estimate of relative 

channel thickness, and coherence to provide a similar quantitative estimate of channel 

width. These tools can unravel stratigraphic features of interest preserved in the geologic 

record. 

 

Fortran90 program flatten, flattens the horizon slice along the picked horizon time. 

I provide the UNIX ‘man page’ of this algorithm as Appendix D. 
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Figure 5.9 Time slice of seismic volume at t = 1.060 s through a survey acquired over the 
Central Basin Platform, west Texas, U.S.A. White arrows point to two different channel 

branches. (Seismic data courtesy of Burlington Resources) 
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Figure 5.10 Time slice of composite volume of peak frequency and peak amplitude above 

average with 2D color map at t = 1.060 s. (Magenta arrows point to channel) 
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Figure 5.11 Time slice of composite volume of peak frequency and peak amplitude above 
average with 2D color map at t = 1.096 s. (Magenta and yellow arrows point to channels) 
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Figure 5.12 (a) Phantom horizon slice 44 ms above the Atoka unconformity through a 

composite volume of peak frequency and peak amplitude above average and coherence; 
(b) amplitude spectrum of the erosional unconformity which appears as bright yellow; (c) 

amplitude spectrum of the Pennsylvanian age channels draining the erosional 
unconformity which appear as bright; (d) amplitude spectrum of channel matrix which 

appears as a lower amplitude spectrum and appears as dark blue. 
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Figure 5.13 (a) Seismic section of line AB from Figure 5.12; (b), (c) and (d) the same 

amplitude spectrum as Figure 5.12. 
 
 
 
5.5 SUMMARY 

 

Through the use of instantaneous spectral analysis based on wavelet-based 

spectral decomposition, I have extended the concept of using peak spectral frequency of 

mapped horizons to full 3D volumes. I find that these peak spectral frequencies are most 

useful if modulated by some measure of the corresponding spectral amplitude. For 

channels where I expect lateral changes in thin-bed tuning, I find that the peak spectral 

amplitude above the average spectral amplitude is particularly useful by deemphasizing 

the appearance of strong-amplitude flat spectral responses. 
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While spectral decomposition is a good indicator of channel thickness, coherence 

and other edge detectors are good indicators of channel width. For this reason, I advocate 

displaying the both attributes in a composite image. I have shown the effectiveness of this 

technique in mapping Tertiary channels in marine survey. I find this technique to be an 

excellent tool for rapidly mapping channels that may be of importance both for prospect 

evaluation and for quantifying reservoir heterogeneity. I am encouraged to believe that by 

using these three measures together that we can develop improved geostatistics and/or 

neural net work flows that with well control, can help us quantitatively estimate reservoir 

thickness.  
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CHAPTER 6 

LOW FREQUENCY HYDROCARBON INDICATORS 

 

6.1 INTRODUCTION 

  

 In Chapter 3, I introduced three different spectral attributes display techniques. In 

Chapters 4 and 5, I applied the spectral attributes to predict thin bed thickness and to 

detect channels. In this chapter, I will investigate the use of spectral attributes as a 

hydrocarbon indicator. 

 

 After introducing instantaneous frequency, Taner et al. (1979) noted that low 

frequency shadow zones are often associated with gas reservoirs and hypothesized that it 

could be caused by anomalous attenuation. Barnes (1993) recommended using the 

average frequency rather than instantaneous frequency, since instantaneous frequency 

often provides inaccurate spikes where waveforms interfere. Dilay and Eastwood (1995) 

showed the high frequency loss due to high attenuation. Mitchell et al. (1997) discussed 

that identifying low frequency shadows is useful, but unreliable. Castagna et al. (2003) 

improved on this DHI by using instantaneous spectral analysis. Ebrom (2004) listed ten 

different stack related and non-stack related mechanisms which may cause low frequency 

shadow zones. Yang (2003) proposed that low frequency AVO can be used to 

differentiate between packed and blocky sands. Fahmy et al. (2005) showed a field 
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example from offshore West Africa with a low frequency oil reservoir around 11 Hz. 

Goloshubin et al. (2006) proposed that there is a low frequency sensitivity to relative 

fluid mobility based on double porosity model. Odebeatu et al. (2006) proposed that low 

frequency anomalies associated with a gas reservoir could be due to dispersion.  

 

 I apply the RGB display technique introduced in Chapter 3 to a seismic survey from 

the Louisiana Shelf, Gulf of Mexico, over a known oil and gas field. 

 

6.2 LOW FREQUENCY ZONE DETECTION 

  

 In Chapter 3, I introduced the Red-Green-Blue display technique using least-squares 

fitting with three different basis functions. Now we examine the same field example 

shown in Figure 3.8 from the Louisiana Shelf, Gulf of Mexico. Figure 6.1 shows two 

seismic vertical sections A-A’ and B-B’ as well as a time slice at 2.7 s through the 3-D 

seismic volume.  The white arrow on seismic line A-A’ shown in Figure 6.2 indicates an 

oil reservoir with a gas cap. I plot a representative trace through the reservoir in Figure 

6.3 along with its corresponding amplitude spectrum decomposed using the S-transform. 

At t=2.7 s, we can easily see the low frequency response (black arrow) just below the 

reservoir around t=2.6 s.  I display the amplitude spectra at two different time locations 

in Figure 6.4. Figure 6.4a shows the amplitude spectrum at t=2.61 s, while Figure 6.4b 

shows the amplitude spectrum at t=2.7 s. Comparing Figures 6.4a and 6.4b, we note that 

the amplitude spectrum at t=2.7 s has a relatively lower peak frequency.   
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Figure 6.1 Slice view of 3-D seismic volume. (Seismic data courtesy of Fairfield 

Industries) 
 
 
 

 
Figure 6.2 Seismic line A-A’. (Seismic data courtesy of Fairfield Industries) 
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Figure 6.3 One seismic trace and its corresponding amplitude spectrum. 

 
 

 
Figure 6.4 Amplitude spectra extracted from Figure 6.3 at (a) t=2.61 s and (b) t=2.7 s. 

Note the loss of high frequencies below the reservoir level of t=2.61 s. 
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 Figure 6.5 demonstrates the coherence section of seismic line A-A’ (Figure 6.2). 

From the coherence section, we can easily see two faults. Figures 6.6a and 6.6b show the 

single frequency sections of 10 Hz and 60 Hz generated by spectral decomposition. The 

black arrow points to the hydrocarbon reservoir with high amplitude below it (Figure 

6.6a). The RGB plot of decomposed spectra is shown in Figure 6.7. The white arrow 

points to the reservoir level which appears as red, indicating a spectrum richer in lower 

frequencies.   

 

 

 
Figure 6.5 The coherence section of seismic line A-A’ shown in Figure 6.2. 
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(a) 

 

 
(b) 

Figure 6.6 Single frequency sections (a) 10 Hz and (b) 60 Hz of seismic line A-A’ (Black 
arrow point to the hydrocarbon reservoir shown in Figure 6.2). 
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Figure 6.7 RGB plot of decomposed amplitude spectra of seismic line A-A’. (White 

arrow points to the low frequency zone) 
 

The vertical section of seismic line B-B’ is shown in Figure 6.8 where again the 

white arrow indicates the hydrocarbon reservoir. The corresponding coherence section is 

shown in Figure 6.9. Figure 6.10 shows the RGB plot of seismic line B-B’. The white 

arrow in Figure 6.10 indicates the low frequency zone associated with the hydrocarbon 

reservoir.  

 

A horizon was picked along the peak amplitude of pay reservoir response around 

2.6 s. This horizon slice RGB plot of the spectral amplitudes is shown in Figure 6.11. In 

Figure 6.11, we can easily see the low frequency zones indicated by the white arrow. 

From the field example, it appears that the RGB display technique is a good tool to detect 

low frequency zones.  
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Figure 6.8 Seismic line B-B’. (Seismic data courtesy of Fairfield Industries) 

 
 

 
Figure 6.9 The coherence section of seismic line B-B’ shown in Figure 6.8. 

 
 
 
 
 
 
 



 92

 
 

 
Figure 6.10 RGB plot of decomposed spectral amplitude spectra of seismic line B-B’. 

 
 
 

 
Figure 6.11 RGB plot of decomposed spectral amplitude along the picked horizon slice 

around 2.6 s. 
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6.3 PETROPHYSICAL MODELING OF LOW FREQUENCY ANOMALIES 

  

From the section above, we note a spectral shift to lower frequency. To test which 

petrophysical parameter contributes to the spectral shift, I make the following numerical 

tests. The petrophysical parameters include velocity change, density change, and constant 

quality factor “Q” model. 

 

 Taner and Treitel (2003) made a constant Q model to generate synthetic responses 

and proposed a new attenuation prediction method. Modified from their five-layer model, 

I built a simple three layer model to generate the synthetic traces. The top and bottom 

layers are shale with sandstone in the middle. The parameters of the gas-saturated 

sandstone reservoir are shown in Figure 6.12. The sandstone thickness is 20 m. The 

source wavelet is a zero-phase Ricker wavelet with a peak frequency of 30 Hz.  

   

 
Figure 6.12 Three layer model. (Sw is water saturation, Vp is the P-wave velocity, ρ  is the 

density, and Q is the quality factor) 
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 In my first test I examine the sensitivity to the sandstone’s velocity and keep all 

other parameters the same. The synthetic response is shown in Figure 6.13a (red color 

refers to velocity 2520 m/s, black refers to 3020 m/s, and blue refers to 3520 m/s,). The 

corresponding amplitude spectra are shown in Figure 6.13b. We can clearly see the peak 

frequency shift because of the thin bed response (time thickness changes due to velocity 

change). The higher velocity means smaller two way traveling time which in turn gives 

rise to a higher peak frequency if the thickness keeps the same. I also see the amplitude 

change due to different reflection coefficients calculated from P-wave impedance which 

is a function of both velocity and density.  

 

  
(a)                                                    (b) 

Figure 6.13 Velocity test showing (a) the synthetic response with different velocities, and 
(b) the corresponding amplitude spectra with different velocities. (Red is 2520 m/s, black 

is 3020 m/s, and blue is 3520 m/s) 
 

  

 In my second test I examine the sensitivity to the sandstone’s density. Figures 6.14a 

and 6.14b show the synthetic responses and the corresponding amplitude spectra with 
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different density values. I find that density change will not shift the peak frequency, and 

it only affects the amplitude magnitude. 

 

 
(a)                                                         (b) 

Figure 6.14 Density test showing (a) the synthetic response, and (b) the corresponding 
amplitude spectra for different densities: ρ=2.0 g/cm3 (red), ρ=2.15 g/cm3 (black) and 

ρ=2.3 g/cm3 (blue). 
 

 In my third test, I examine the effect of “Quality factor” Q on the spectral 

component amplitudes. In Figure 6.15a I generate the synthetic response of the thin layer 

with values of Q ranging from 5 to 60. In Figure 6.15b I plot the corresponding amplitude 

spectra. The response for Q=60 would be representative of a simple ‘structural’ or thin 

bed tuning response. From Figure 6.15b, I find for a 20 m thick thin bed that the peak 

frequency is relatively insensitive to Q. Even a very small Q value will not explain the 

shift to low frequencies seen in my real data thin bed response. 

 

 In my fourth and final test, I examine the sensitivity to three different fluids 

corresponding to gas, fizz water, and 100% water saturation. The rock property 

parameters are shown in Figure 6.16. The fizz water sand has the lowest Q value and P-
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wave velocity. The water sand has the highest Q value and P-wave velocity. Figures 

6.17a and 6.17b show the resulting synthetic response and amplitude spectra, respectively. 

From Figure 6.17b, I find the peak frequencies have slightly changed which are caused 

by the combination effects of velocity and Q. The magnitudes of the amplitude spectra 

are quite different due to the different P-wave impedance contrasts 

 

(a)                                                                 (b) 
Figure 6.15 Quality factor Q test showing (a) the synthetic response with different Q 

values, and (b) the corresponding amplitude spectra with different Q values. 
 

 .  
Figure 6.16 Three layer models with gas sand, fizz water sand and water sand. (Sw is the 
water saturation, Vp is the P-wave velocity, ρ is the density, and Q is the quality factor) 
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(a)                                                        (b) 

Figure 6.17 Fluid content test showing (a) the synthetic responses, and (b) the 
corresponding amplitude spectra for gas sand, fizz water sand and water sand.  
 
 

 
6.4 SUMMARY 

 

 Low frequency zones can be detected by using Red-Green-Blue display technique. 

Constant Q tests show that even very small Q value is not enough to shift high frequency 

to low frequency for a thin bed reservoir. The shift to low frequency is therefore due to 

either inaccurate seismic imaging, to multiple layers interference, or to some more 

complex attenuation mechanisms. 
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APPENDIX A  
MANPAGE OF ALGORITHM SPEC_PROJ 

 
 
 
NAME 

spec_proj - spectral decomposition using short window discrete Fourier 
transform or S-transform. Short window discrete Fourier transform is using the 
fixed length Gaussian window, while S-transform is using frequency dependent 
Gaussian window. The output files can include decomposed spectral magnitude, 
phase or calculated instantaneous average frequency, dominant frequency and 
bandwidth. This program can also generate the Red, Green and Blue files for 
RGB plot. 

 
 

SYNOPSIS 
d_fn=d_fn spec_mag_fn=spec_mag_fn spec_phase_fn=spec_phase_fn 
spec_trace_mag_fn=spec_trace_mag_fn 
spec_trace_phase_fn=spec_trace_phase_fn avg_freq_fn=avg_freq_fn 
dom_freq_fn=dom_freq_fn bandwidth_fn=bandwidth_fn blue_fn=blue_fn 
green_fn=green_fn red_fn=red_fn fmin_out=fmin_out fmax_out=fmax_out 
df_out=df_out first_line_out=first_line_out last_line_out=last_line_out 
first_cdp_out=first_cdp_out last_cdp_out=last_cdp_out st=st kc=kc 
f_blue=f_blue f_green=f_green f_red=f_red 

 
 

DESCRIPTION 
spec_proj reads in a seismic data volume and decomposes it using short window 
discrete Fourier transform or S-transform. 
 

Command line arguments 
d_fn=d_fn (Default - NONE) 

Enter the SEP90 format input seismic file to be decomposed. The history file 
of the input should include the following information: 
o1=first time sample in seconds 
d1=sample increment in seconds 
n1=number of time samples 
o2=first cdp number 
d2=cdp number increment (usually=1) 
n2=number of cdps 
o3=first line number 
d3=line number increment (usually=1) 
n3=number of lines 
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spec_mag_fn=spec_mag_fn (Optional output file) 

Enter the string that will form the root of a suite of SEP90 format file names 
containing the magnitude of the spectral components. For example, if 
spec_mag_fn=’spec_mag_vinton’, and if the output frequency parameters 
are fmin_out=5, fmax_out=100., and df_out=5, then the output spectral 
magnitude components will be named, spec_mag_vinton___5.H, 
spec_mag_vinton___10.H, spec_mag_vinton_vinton__15.H,..., 
spec_mag_vinton__95.H, spec_mag_vinton_100.H. Each output file contains 
a ’cube’ of spectral magnitudes for a given frequency. 
 

spec_phase_fn=spec_phase_fn (Optional output file) 
Enter the string that will form the root of a suite of SEP90 format file names 
containing the phase of the spectral components. For example, if 
spec_phase_fn=’spec_phase_vinton’, and if the output frequency parameters 
are fmin_out=5, fmax_out=100., and df_out=5, then the output spectral 
phase components will be named, spec_phase_vinton___5.H, 
spec_phase_vinton___10.H, spec_phase_vinton_vinton__15.H,..., 
spec_phase_vinton__95.H, spec_phase_vinton_100.H. Each output file 
contains a ’cube’ of spectral phases for a given frequency. 
 

spec_trace_mag_fn=spec_trace_mag_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the magnitude 
of the spectrum trace by trace (usually for single trace test). The spectrum 
magnitudes are saved in sequential frequency series, e. g. from 1, 2, 3... 100 
Hz. 

spec_trace_phase_fn=spec_trace_phase_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the phase of the 
spectrum trace by trace (usually for single trace test). The spectrum phases 
are saved in sequential frequency series, e. g. from 1, 2, 3 ...100 Hz. 

 
avg_freq_fn=avg_freq_fn (Optional output file) 

Enter the file name of the SEP90 format output that contains the 
instantaneous average frequency spectrum. The instantaneous average 
frequency spectrum is generated for each time location. 
 

dom_freq_fn=dom_freq_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the 
instantaneous dominant frequency spectrum. The instantaneous dominant 
frequency spectrum is generated for each time location. 
 

bandwidth_fn=bandwidth_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the 
instantaneous bandwidth. The instantaneous bandwidth is generated for each 
time location. 
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f_red_fn=f_red_fn (Optional output file) 

Enter the file name of the SEP90 format output that contains the low 
frequency basis function coefficients. The high frequency center is defined 
by the parameter f_red. This file will be used for Red-Green-Blue plot. 
 

f_green_fn=f_green_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the middle 
frequency basis function coefficients. The high frequency center is defined 
by the parameter f_green. This file will be used for Red-Green-Blue plot. 
 

f_blue_fn=f_blue_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the high 
frequency basis function coefficients. The high frequency center is defined 
by the parameter f_blue. This file will be used for Red-Green-Blue plot. 
 

fmin_out=fmin_out (Default=10.0) 
Enter the minimum frequency of the spectral components to be output in Hz. 
 

fmax_out=fmax_out (Default=80.0) 
Enter the maximum frequency of the spectral components to be output in Hz. 
 

df_out=df_out (Default=5.0) 
Enter the frequency increment of the spectral components to be output in Hz. 
 

f_red=f_red (Default=10) 
Enter the high frequency basis function’s center frequency, e.g. 10 Hz. 
 

f_green=f_green (Default=30) 
Enter the middle frequency basis function’s center frequency, e.g. 30 Hz. 
 

f_blue=f_blue (Default=50) 
Enter the low frequency basis function’s center frequency, e.g. 50 Hz. 
 

kc=kc (Default=20) 
Enter the parameter values to define the fixed Gaussian window which is 
used in short window discrete Fourier transform. 

st=y (Default=y) 
Enter the ‘y’ or ‘n’ to define the spectral decomposition is using  
S-transform (st=y) or short window discrete Fourier transform (st=n). 
 
 

MPI 
 

This program spec_proj is only running with MPI. 
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BUGS 
No bugs known at present. 
 
 

SEE EXAMPLES /seismic/code/scripts/spec_proj.sh 
mpirun -np 6 -machinefile ./tower_101_processors -v spec_proj 

d_fn=test.H 
spec_mag_fn=spec_mag_test.H 
spec_phase_fn=spec_phase_test.H 
f_red_fn=f_red_test.H 
f_green_fn=f_green_test.H 
f_blue_fn=f_blue_test.H 
avg_freq_fn=avg_freq_test.H 
dom_freq_fn=dom_freq_test.H 
bandwidth_fn=bandwidth_test.H 
fmin_out=10 
fmax_out=80 
df_out=10 
f_red=60 
f_green=40 
f_blue=20 
st=y 
kc=20 
 

spec_cmp 
 
 

RESTRICTIONS 
Copyright, Allied Geophysical Laboratories University of Houston, Houston TX, 
USA Royalty free use for AGL sponsors and co-investigators for use in research, 
exploration, with partners, host governments, and for provision of 
processing/interpretation service to sponsor clients Redistribution, sale, or 
inclusion of this software in software products outside the sponsor worksite 
requires a separate commercialization agreement with the University of Houston. 

 
 

AUTHORS 
Jianlei Liu and Kurt J. Marfurt. Allied Geophysical Laboratories, University of 
Houston. Version June 9, 2006. 
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APPENDIX B  
MANPAGE OF ALGORITHM SPEC_CMP 

 
 
NAME 

spec_cmp - decomposes seismic data into either Ricker or Morlet wavelets using 
a matching pursuit technique. The complex spectrum (amplitude and phase) of 
each wavelet is accumulated to generate a time-frequency spectral decomposition. 

 
 

SYNOPSIS 
d_fn=d_fn amp_fn=amp_fn freq_fn=freq_fn phase_fn=phase_fn 
modeled_fn=modeled_fn residual_fn=residual_fn wavelet_fn=wavelet_fn 
spec_mag_fn=spec_mag_fn spec_phase_fn=spec_phase_fn 
peak_freq_fn=peak_freq_fn peak_phase_fn=peak_phase_fn 
peak_amp_fn=peak_amp_fn 
peak_amp_above_avg_fn=peak_amp_above_avg_fn 
spec_trace_mag_fn=spec_trace_mag_fn 
spec_trace_phase_fn=spec_trace_phase_fn avg_spec_fn=avg_spec_fn 
avg_spec_scale_fn=avg_spec_scale_fn spec_scale_fn=spec_scale_fn 
red_fn=red_fn green_fn=green_fn blue_fn=blue_fn fmin_table=fmin_table 
fmax_table=fmax_table df_table=df_table fmin_out=fmin_out 
fmax_out=fmax_out df_out=df_out maxiter=maxiter tol=tol pc_max=pc_max 
pc_fnorm=pc_fnorm dphase=dphase change_min=change_min 
first_line_out=first_line_out last_line_out=last_line_out 
first_cdp_out=first_cdp_out last_cdp_out=last_cdp_out ttaper=ttaper 
wavelet=wavelet interp=interp verbose=verbose 

 
 

DESCRIPTION 
spec_cmp reads in a seismic data volume and decomposes it into either Ricker or 
Morlet wavelets using a matching pursuit algorithm and least squares solution. 
Each wavelet is expressed by an amplitude, phase, and frequency, which in turn 
can be broken into Fourier spectral components, thereby generating a spectral 
decomposition. 

 
Command line arguments 

d_fn=d_fn (Default - NONE) 
Enter the SEP90 format input seismic file to be decomposed. The history file 
of the input should include the following information: 
o1=first time sample in seconds 
d1=sample increment in seconds 
n1=number of time samples 
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o2=first cdp number 
d2=cdp number increment (usually=1) 
n2=number of cdps 
o3=first line number 
d3=line number increment (usally=1) 
n3=number of lines 

 
amp_fn=amp_fn (Optional output file) 

Enter the file name of the SEP90 format output that contains the amplitude 
(envelope) of each wavelet used to fit the input data. 

 
freq_fn=freq_fn (Optional output file) 

Enter the file name of the SEP90 format output that contains the frequency 
of each wavelet used to fit the input data. 

 
phase_fn=phase_fn (Optional output file) 

Enter the file name of the SEP90 format output that contains the phase of 
each wavelet used to fit the input data. 

 
modeled_fn=modeled_fn (Optional output file) 

Enter the file name of the SEP90 format output that contains the modeled 
(that part of the data fit by the wavelets) seismic data. 

 
residual_fn=residual_fn (Optional output file) 

Enter the file name of the SEP90 format output that contains the residual 
(that part of the data NOT fit by the wavelets) seismic data. 
 

spec_mag_fn=spec_mag_fn (Optional output file) 
Enter the string that will form the root of a suite of SEP90 format file names 
containing the magnitude of the spectral components. For example, if 
spec_mag_fn=’spec_mag_vinton’, and if the output frequency parameters 
are fmin_out=5, fmax_out=100., and df_out=5, then the output spectral 
magnitude components will be named, spec_mag_vinton___5.H, 
spec_mag_vinton___10.H, spec_mag_vinton_vinton__15.H,..., 
spec_mag_vinton__95.H, spec_mag_vinton_100.H. Each output file contains 
a ’cube’ of spectral magnitudes for a given frequency. 
 

spec_phase_fn=spec_phase_fn (Optional output file) 
Enter the string that will form the root of a suite of SEP90 format file names 
containing the phase of the spectral components. For example, if 
spec_phase_fn=’spec_phase_vinton’, and if the output frequency parameters 
are fmin_out=5, fmax_out=100., and df_out=5, then the output spectral 
phase components will be named, spec_phase_vinton___5.H, 
spec_phase_vinton___10.H, spec_phase_vinton_vinton__15.H,..., 
spec_phase_vinton__95.H, spec_phase_vinton_100.H. Each output file 
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contains a ’cube’ of spectral phases for a given frequency. 
 

peak_freq_fn=peak_freq_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the peak 
frequency (or mode) of the spectrum estimated at each point in the input data 
volume. The peak frequency is often an indicator of thin bed tuning. 
 

peak_phase_fn=peak_phase_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the phase at the 
peak frequency (or mode) of the spectrum estimated at each point in the 
input data volume. The peak phase may help in differentiating upward fining 
vs. upward coarsening sequences, as well as enhancing lateral discontinuities. 
 

peak_amp_fn=peak_amp_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the amplitude 
of the spectrum at the peak frequency (or mode) of the spectrum estimated at 
each point in the input data volume. The amplitude is a function of both the 
reflection coefficient and thin bed tuning. 
 

peak_amp_above_avg_fn=peak_amp_above_avg_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the amplitude 
of the spectrum at the peak frequency (or mode) of the spectrum as measured 
above the average spectrum. Subtracting out the average spectrum reduces 
the appearance of high amplitude, flat spectrum reflections, and enhances the 
appearance of high amplitude, highly tuned spectrum reflections. 
 

spec_trace_mag_fn=spec_trace_mag_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the magnitude 
of the spectrum trace by trace (usually for single trace test). The spectrum 
magnitudes are saved in sequential frequency series, e. g. from 1, 2, 3, ....100 
Hz. 
 

spec_trace_phase_fn=spec_trace_phase_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the phase of the 
spectrum trace by trace (usually for single trace test). The spectrum phases 
are saved in sequential frequency series, e. g. from 1, 2, 3, ....100 Hz.  
 

avg_spec_fn=avg_spec_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the average 
spectrum. The average spectrum is saved for each time slice with frequency 
ranges from minimum frequency to maximum frequency. 
 

avg_spec_scale_fn=avg_spec_scale_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the scaled 
average spectrum (after spectrum balancing). The scaled average spectrum is 
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saved for each time slice with frequency ranges from minimum frequency to 
maximum frequency. 
 

spec_scale_fn=spec_scale_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the magnitude 
of the scaled spectrum after spectrum balancing (usually for single trace test). 
The scaled spectrum magnitudes are saved in sequential frequency series, e. 
g. from 1, 2, 3, ....100 Hz. 
 

f_red_fn=f_red_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the low 
frequency basis function coefficients. The high frequency center is defined 
by the parameter f_red. This file will be used for Red-Green-Blue plot. 
 

f_green_fn=f_green_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the middle 
frequency basis function coefficients. The high frequency center is defined 
by the parameter f_green. This file will be used for Red-Green-Blue plot. 
 

f_blue_fn=f_blue_fn (Optional output file) 
Enter the file name of the SEP90 format output that contains the high 
frequency basis function coefficients. The high frequency center is defined 
by the parameter f_blue. This file will be used for Red-Green-Blue plot. 
 

fmin_table=fmin_table (Default=10.0) 
Enter the minimum peak or center frequency of the tabled wavelets in Hz. 
 

fmax_table=fmin_table (Default=100.0) 
Enter the maximum peak or center frequency of the tabled wavelets in Hz. 
 

df_table=df_table (Default=1.0) 
Enter the increment of the peak or center frequency of the tabled wavelets in 
Hz. 
 

fmin_out=fmin_out (Default=10.0) 
Enter the minimum frequency of the spectral components to be output in Hz. 
 

fmax_out=fmax_out (Default=100.0) 
Enter the maximum frequency of the spectral components to be output in Hz. 
 

df_out=df_out (Default=5.0) 
Enter the frequency increment of the spectral components to be output in Hz. 
 

maxiter=maxiter (Default=1) 
Enter the maximum number of iterations to be used in the matching pursuit 
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waveform fitting. 
 

tol=tol (Default=0.01) 
Enter the fractional value of the rms energy of each trace below which the 
matching pursuit algorithm will be declared to have completed. 
 

pc_max=pc_max (Default=0.50) 
At each iteration, fit only those wavelets whose envelope falls above 
pc_max* the maximum envelope of the current residual trace. 
 

change_min=change_min (Default=0.02) 
Enter the minimal fractional change in the convergence rate. If the rms 
energy of the residual does not decrease by more than a factor of 
change_min from the previous iteration, the iteration processed will be 
declared to have converged. 
 

pc_fnorm=pc_fnorm (Default=0.05) 
A normalization term in spectral balancing. If a_max is the maximum 
average spectral amplitude for the current time slice, and if a(f) is the 
average spectral amplitude for frequency f for the current time slice, then the 
amplitude at frequency f will be rescaled to be: @ a(f) = a(f) over ( a(f) + 
pc_norm*amax ) @ 
 

ttaper=ttaper (Default=1./(2.*fmin_table)) 
Enter the temporal taper to be applied to the beginning and end of the 
seismic trace. The software does not allow wavelet centers to fall off the 
trace. 
 

f_red=f_red (Default=10) 
Enter the high frequency basis function’s center frequency, e.g. 10 Hz. 
 

f_green=f_green (Default=30) 
Enter the middle frequency basis function’s center frequency, e.g. 30 Hz. 
 

f_blue=f_blue (Default=50) 
Enter the low frequency basis function’s center frequency, e.g. 50 Hz. 

 
wavelet=wavelet (Default=’r’) 

Enter ’r’ for Ricker or ’m’ for Morlet to define the wavelet basis function. 
Since most input spectra are characterized by a bias towards the low end of 
the spectra, the Ricker wavelets (’r’) in general result in smaller residuals 
and faster convergence. 
 

verbose=verbose (Default=’n’) 
Enter ’y’ or ’n’ to turn on verbose output. Useful in tracking down program 
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data flow errors. 
 
 

MPI 
This program spec_cmp is only running with MPI. 

 
 

BUGS 
No bugs known at present. 
 

 
SEE EXAMPLES /seismic/code/scripts/spec_cmp.sh 

mpirun -np 6 -machinefile /seismic/code/processors/tower_101_processors -v 
spec_cmp 

d_fn=test.H  
spec_mag_fn=spec_mag_test.H  
spec_phase_fn=spec_phase_test.H  
fmin_out=10  
fmax_out=80  
df_out=10  
ttaper=0.01  
maxiter=100  
pc_max=0.8 
tol=0.05 
change_min=0.01 
 

spec_proj, slice 
 
 

RESTRICTIONS 
Copyright, Allied Geophysical Laboratories University of Houston, Houston TX, 
USA Royalty free use for AGL sponsors and co-investigators for use in research, 
exploration, with partners, host governments, and for provision of 
processing/interpretation service to sponsor clients Redistribution, sale, or 
inclusion of this software in software products outside the sponsor worksite 
requires a separate commercialization agreement with the University of Houston. 

 
 

AUTHORS 
Jianlei Liu and Kurt J. Marfurt. Allied Geophysical Laboratories, University of 
Houston. Version June 9, 2006. 
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APPENDIX C  
MANPAGE OF ALGORITHM GENERATE_PPM 

 
 

NAME 
generate_ppm - generate Red_Green_Blue graph file in .ppm format. 
 
 

SYNOPSIS 
red_fn=red_fn green_fn=green_fn blue_fn=blue_fn line=line cdp=cdp 
slicetime=slictime 
 
 

DESCRIPTION 
generate_ppm reads in three Red, Green and Blue files and generates the RGB 
file in .ppm format. 
generate_ppm red_fn= green_fn= blue_fn= line= cdp= slicetime= ppm_fn= 
 

Command line arguments 
red_fn=red.H (Required input file name) 

Enter the SEP90 format input file to be used to generate RGB graph file. The 
red file is for low frequency basis function. The history file of the input 
should include the following information: 
o1=first time sample in seconds 
d1=sample increment in seconds 
n1=number of time samples 
o2=first cdp number 
d2=cdp number increment (usually=1) 
n2=number of cdps 
o3=first line number 
d3=line number increment (usually=1) 
n3=number of lines 
 

green_fn=green.H (Required input file name, same format as red_fn) 
Enter the SEP90 format input file to be used to generate RGB graph file. The 
green file is for middle frequency basis function. 
 

blue_fn=blue.H (Required input file name, same format as red_fn) 
Enter the SEP90 format input file to be used to generate RGB graph file. The 
blue file is for high frequency basis function. 
 

line=line (Default=’NONE’) 
Enter the line number for output RGB graph file. 
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cdp=cdp (Default=’NONE’) 

Enter the cdp number for output RGB graph file. 
 

slicetime=slicetime (Default=’NONE’) 
Enter the slice time in second for output RGB graph file. 
 
 

BUGS 
No bugs known at present. 
 
 

SEE EXAMPLES /seismic/code/scripts/generate_ppm.sh 
generate_ppm red_fn=red_test.H green_fn=green_test.H blue_fn=blue_test.H 
line=200 ppm_fn=rgb_output_line_test.ppm 

 
 

RESTRICTIONS 
Copyright, Allied Geophysical Laboratories University of Houston, Houston TX, 
USA Royalty free use for AGL sponsors and co-investigators for use in research, 
exploration, with partners, host governments, and for provision of 
processing/interpretation service to sponsor clients Redistribution, sale, or 
inclusion of this software in software products outside the sponsor worksite 
requires a separate commercialization agreement with the University of Houston. 

 
 

AUTHORS 
Jianlei Liu and Kurt J. Marfurt. Allied Geophysical Laboratories, University of 
Houston. Version June 9, 2006. 
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APPENDIX D  
MANPAGE OF ALGORITHM FLATTEN 

 
 

NAME 
flatten - flatten the seismic volume with input horizon time values. 
 
 

SYNOPSIS 
horizon_fn=horizon_fn tstart=tstart tend=tend 
 
 

DESCRIPTION 
flatten reads in a seismic data volume and flatten it using the time values from 
horizon file. 
flatten < input.H horizon_fn= tstart= tend= > output.H 

Command line arguments 
< (standard SEP input file) (Required input file name) 

Enter the SEP90 format input seismic file to be flattened. The history file of 
the input should include the following information: 
o1=first time sample in seconds 
d1=sample increment in seconds 
n1=number of time samples 
o2=first cdp number 
d2=cdp number increment (usually=1) 
n2=number of cdps 
o3=first line number 
d3=line number increment (usually=1) 
n3=number of lines 
 

horizon_fn=horizon_fn (Required input horizon file name) 
Enter the horizon file of SEP90 format containing the time values of the 
picked horizon. The horizon file only has one number of n1. n2 and n3 have 
the same number of input seismic volume.  
o1=1  
d1=1  
n1=1  
o2=first cdp number  
d2=cdp number increment (usually=1)  
n2=number of cdps  
o3=first line number  
d3=line number increment (usually=1)  
n3=number of lines 
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tstart=tstart (Default=-0.05) 

Enter the start time with respect to picked horizon in second (positive=below, 
negative=above). 
 

tend=tend (Default=0.05) 
Enter the end time with respect to picked horizon in second (positive=below, 
negative=above). 
 

> (standard SEP output file) (Required output file name) 
Enter the SEP90 format output seismic file with volume defined by tstart and 
tend. 
 
 

BUGS 
No bugs known at present. 
 
 

SEE EXAMPLES /seismic/code/scripts/flatten.sh 
flatten < input.H horizon_fn=horizon_test.H tstart=-0.05 tend=0.05 > output.H 

 
 
 
RESTRICTIONS 

Copyright, Allied Geophysical Laboratories University of Houston, Houston TX, 
USA Royalty free use for AGL sponsors and co-investigators for use in research, 
exploration, with partners, host governments, and for provision of 
processing/interpretation service to sponsor clients Redistribution, sale, or 
inclusion of this software in software products outside the sponsor worksite 
requires a separate commercialization agreement with the University of Houston. 

 
 

AUTHORS 
Jianlei Liu and Kurt J. Marfurt. Allied Geophysical Laboratories, University of 
Houston. Version June 9, 2006. 

 
 
 
 
 
 
 
 


