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Introduction 

In geophysics, it has been common to describe the elastic behavior of rocks in isotropic terms, 

although most rock masses whose elasticity has been actually measured are anisotropic.  A chief 

reason for this fundamental mismatch between theory and practice was that the equations for elastic 

anisotropy are much more complex than for isotropy. However, the assumption that the anisotropy is 

“weak” has proven to be very useful in simplifying the equations for the anisotropic velocities, 

enabling a more complete description of rock elasticity for seismic analysis.  The purpose of the 

present work is to extend this simplification from the elastic stiffnesses (moduli), useful in elastic 

wave propagation, to the elastic compliances, useful in many other contexts. 

 

Elasticity 

The linear-elastic constitutive equation for homogeneous anisotropic bodies was first written by 

Hooke (1678, 1931, 2007); in modern notation it is: 

 ~
~~~ C            (1) 

where ~ is the stress (a tensor of 2
nd

 rank), ~ is the strain, and C
~~

is the elastic stiffness (modulus) , a 

tensor of 4
th
 rank.  The individual components are given by 

klijklij C              (1a) 

with summation over repeated indices. Equivalently, the same linear relation may be written as 

 ~
~~~ S             (2) 

where the 4
th
-rank tensor of coefficients S

~~
is the elastic compliance tensor.  The linear elastic material 

properties are entirely expressed by either of these tensors (or by certain combinations of their 

elements).   
 

Because of internal symmetries (Nye, 1985), the 3x3x3x3 tensors may be written as 6x6 matrices, 

using the so-called Voigt (1928) recipe:  
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With this notation, the elastic stiffness and compliance matrices of isotropic bodies may be written as: 
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where   is the shear modulus (governing shear wave propagation), c = K + 4/3 is the longitudinal 

modulus (governing P-wave propagation), K  is the incompressibility, and  2 c  is the Lame 

parameter.  All elements not shown explicitly are zero.  In the compliance tensor, E  is Young’s 

modulus, and   is Poisson’s ratio.   

 

Polar anisotropy 

The simplest anisotropic case of geophysical interest is that with a single axis of symmetry: polar 

anisotropy (sometimes called “Transverse Isotropy” [sic]).   For this case: 
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Here the evident equivalence of the 1- and 2-axes is a consequence of the assumed rotational 

symmetry about the polar (3-) axis.  There are only 5 independent stiffnesses, since 661112 2CCC  .  

There are only 5 independent compliances, since 2/661112 SSS  .  Explicit expressions for the S   

in terms of the C , and vvs, are given by Nye (1985). 

 
Weak Polar Anisotropy 

The equations for velocity at general angles (in terms of elastic stiffnesses), are well-known (cf. e.g., 

Thomsen , 1986) but are so algebraically complicated that an intuitive understanding of their meaning 

is difficult.  The assumption of weak anisotropy simplifies the equations for elastic wave velocities so 

markedly that the notation introduced by Thomsen (1986) for polar anisotropy has become 

conventional (Peltoniemi, 2005).  The parameterization in Equation (5) is replaced by  
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The non-dimensional parameters (6bcd) all vanish in the limiting case of isotropy, and it is natural to 

define “weak polar anisotropy” as the case when all are << 1.  When the exact equations for the polar-

anisotropic velocities are linearized in these small quantities, they simplify substantially (Thomsen, 

1986), enabling the wide use of this approximation in analyzing seismic data.  However, the 

definitions themselves (above) do not assume anything about the magnitude of the parameters. 

 

The anisotropy parameters (6bcd) were not found by perturbation theory, but instead were found by 

inspection from the exact equations; this may be inferred from the quadratic form (6c) for .   

However, if   is indeed small, then (6c) is equivalent to its linearized (weak-anisotropy) limit: 

 



33

443313 )2(

C

CCC
w          (6e) 

In the case of the elastic wave velocities, no additional simplification results from the use of (6e) in 

place of (6c). However, in the present case of the compliances, we shall use perturbation theory, and 

so will require that parameters (6bde) be << 1.  This logic, applied to the polar anisotropic 

compliances, yields the principal result of the present work: 
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where the following notation is used, as a matter of convenience: 
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These are the equivalents of:  incompressibility , Lame parameter , Young’s modulus, and Poisson’s 

ratio, all calculated from the symmetry-axis stiffnesses. In terms of the familiar anisotropy 

parameters, the compliance perturbations denoted above are: 
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An example of the effect of these approximations is shown in Figure 1.  For each compliance element, 

the weak anisotropic approximation (7) is exact at zero anisotropy, shows the proper initial slope, and 

begins to deviate at a value of anisotropy near to 5%.   
 

 

Figure 1 Four of the compliance elements, and the compressibility, as a function of , with w = = 0. 

C33 and C44 are fixed at values evident in the graphs.  The ratio C33 / C44 = 9, corresponding to VP0 / 

VS0 = 3, a typical value for young sedimentary rocks.  

 

The deviation begins distinctly earlier in a corresponding calculation with w varied, but this is not 

serious, as w is usually smaller in real rocks than is   or .  For older, harder rocks (with smaller 

values of VP0 /VS0 ), the anisotropic effects are smaller, and the point at which the weak approximation 

deviates from the exact compliances occurs at larger values of the anisotropies. Also shown in the 

Figure is the compressibility, discussed next. 

 

Incompressibility 

The scalar incompressibility (= bulk modulus = 1/compressibility) is of interest, even in this tensor 

context.  From Equation (2), the dilatation is  

kliiklii S
V

V
 


          (10) 

where V is specific volume. If the imposed stress is pressure P, then klkl P  , and we have 
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In terms of the 6x6 matrix elements, this is, for polar anisotropy, 

33131211

1 422 SSSSK 
        (12) 

To first order in the small anisotropic parameters defined above, this is 
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In the special case of isotropy, it happens that  
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KCCK iikkV  (isotropy)      (14) 

where the subscript V indicates that this has the form of a “Voigt-average” (Voigt, 1928) modulus for 

heterogeneous mixtures.   

 

Of course, for anisotropic bodies, KKV  , but the question arises: how different are these two 

quantities?  To first order in the small anisotropic parameters defined above, it turns out that 
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which is identical (to first order) with equation (13)  for K  itself.  Of course, this particular result 

applies only to weak polar anisotropy, but it would be straightforward to extend the analysis to other 

symmetry classes.  This result helps to explain the experimental result of Berryman and Nakagawa 

(2009), that for their experiments on stressed sandstones and bead-packs, KKV  . 

 Conclusions 

The anisotropy parameters which were defined to simplify the equations for anisotropic elastic 

velocity are used to analytically describe the (weak) anisotropic variation of the elastic compliances, 

enabling an understanding of this variation in familiar terms. The scalar incompressibility is identical, 

to first order in anisotropy, with the average of the elastic stiffnesses given in equation (14). 
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